Skip to main content
Log in

Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness GMI Effect and Domain Wall Dynamics of Amorphous Microwires

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract—We showed that stress-annealing performed under proper conditions can improve magnetic softness, domain wall (DW) velocity and giant magneto-impedance (GMI) effect of Fe-based microwires. One order of magnitude improvement of GMI ratio and more than 100% increase of DW velocity have been achieved by stress-annealing. Observed dependencies have been related to the domain structure modification evidenced from the evolution of the hysteresis loops upon stress-annealing. We discussed observed results considering that the outer domain shell with transverse magnetic anisotropy affects the travelling DW in a similar way as the application of transverse bias magnetic field. GMI ratio improvement is attributed to beneficial magnetic anisotropy distribution achieved by stress-annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. P. Harrison, G. L. Turney, and H. Rowe, “Electrical properties of wires of high permeability,” Nature 135, 961 (1935).

    Article  Google Scholar 

  2. L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).

    Article  CAS  Google Scholar 

  3. R. Beach and A. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).

    Article  CAS  Google Scholar 

  4. M. H. Phan and H. X. Peng, “Giant magnetoimedance materials: Fundamentals and applications”, Prog. Mater. Sci., 53, 323–420 (2008).

    Article  Google Scholar 

  5. A. Zhukov, M. Ipatov, and V. Zhukova, “Advances in Giant Magnetoimpedance of Materials”, in Handbook of Magnetic Materials, Vol. 24, Ed. by K. H. J. Buschow (Elsevier, 2015), pp. 139–236 (chapter 2).

    Google Scholar 

  6. M. Knobel, M. Vazquez, and L. Kraus, “Giant Magnetoimpedance,” in Handbook of Magnetic Materials, Vol. 15, Ed. by E. Bruck (North-Holland, 2003), pp. 497–563.

    Google Scholar 

  7. M. Hauser, L. Kraus, and P. Ripka, “Giant magnetoimpedance sensors,” IEEE Instr. Meas. Mag. 4(2), 28–32 (2001).

    Article  Google Scholar 

  8. H. Zhou, Z. Pan, and, and D. Zhang, “Operating point self-regulator for giant magneto-impedance magnetic sensor,” Sensors 17, 1103 (2017).

    Article  Google Scholar 

  9. K. Mohri, T. Uchiyama, L. P. Shen, C. M. Cai, and L. V. Panina, “Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls,” J. Magn. Magn. Mater. 249, 351–356 (2001).

    Article  Google Scholar 

  10. T. Uchiyama, K. Mohri, and Sh. Nakayama, “Measurement of spontaneous oscillatory magnetic field of guinea-pig smooth muscle preparation using pico-tesla resolution amorphous wire magneto-impedance sensor”, IEEE Trans. Magn. 47, 3070–3073 (2011).

    Article  CAS  Google Scholar 

  11. Y. Honkura, “Development of amorphous wire type MI sensors for automobile use,” J. Magn. Magn. Mater. 249, 375–381 (2002).

    Article  CAS  Google Scholar 

  12. A. F. Cobeño, A. Zhukov, J. M. Blanco, V. Larin, and J. Gonzalez, “Magnetoelastic sensor based on GMI of amorphous microwire,” Sensors and Actuators, A 91, 95–98 (2001).

    Article  Google Scholar 

  13. S. Gudoshnikov, N. Usov, A.Nozdrin, M. Ipatov, A. Zhukov, and V. Zhukova, “Highly sensitive magnetometer based on the off-diagonal GMI effect in Co-rich glass-coated microwire,” Phys. Status Solidi A 211, 980–985 (2014).

    Article  CAS  Google Scholar 

  14. L. Ding, S. Saez, C. Dolabdjian, L. G. C. Melo, A. Yelon, and D. Ménard, “Development of a high sensitivity Giant Magneto-Impedance magnetometer: comparison with a commercial Flux-Gate”, IEEE Sens. 9, 159–168 (2009).

    Article  Google Scholar 

  15. A. Talaat, J. Alonso, V. Zhukova, E. Garaio, J. A. García, H. Srikanth, M. H. Phan, and A. Zhukov, “Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia,” Sci. Rep. 6, 39300 (2016).

    Article  CAS  Google Scholar 

  16. L. V. Panina, K. Mohn, T. Uchyama, and M. Noda, “Giant magneto-impedance in Co-Rich amorphous wires and films”, IEEE Trans. Magn. 31, 1249–1260 (1995).

    Article  CAS  Google Scholar 

  17. A. Zhukov, M. Ipatov, M.Churyukanova, A. Talaat, J.M. Blanco, and V. Zhukova, “Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials,” J. Alloy Compd. 727, 887–901 (2017).

    Article  CAS  Google Scholar 

  18. R. Gemperle, L. Kraus and J. Schneider, “Magnetization reversal in amorphous (Fe1 − xNix)80P10B10 microwires,” Czezh. J. Phys. B 28, 1138–1145 (1978).

    Article  Google Scholar 

  19. A. V. Ulitovsky, I. M. Maianski, and A. I. Avramenco, Method of continuous casting of glass coated microwire, Patent USSR No. 128427.

  20. S. A. Baranov, V. S. Larin and A. V. Torcunov, “Technology, preparation and properties of the cast glass-coated magnetic microwires,” Crystals 7, 136 (2017).

    Article  Google Scholar 

  21. H. Chiriac and T.A. Óvári, “Amorphous glass-covered magnetic wires: preparation, properties, applications,” Prog. Mater. Sci., 40, 333–407 (1996).

    Article  CAS  Google Scholar 

  22. A. Zhukov, J. Gonzalez, A. Torcunov, E. Pina, M. J. Prieto, A. F. Cobeño, J. M. Blanco, V. Larin, and S. Baranov, “Ferromagnetic resonance and structure of Fe-based glass-coated microwires,” J. Magn. Magn. Mater. 203, 238–240 (1999).

    Article  CAS  Google Scholar 

  23. V. Zhukova, J. M. Blanco, V. Rodionova, M. Ipatov, and A. Zhukov, “Domain wall propagation in micrometric wires: Limits of single domain wall regime,” J. Appl. Phys. 111, 07E311 (2012).

    Article  Google Scholar 

  24. K. R. Pirota, L. Kraus, H. Chiriac, and M. Knobel, “Magnetic properties and GMI in a CoFeSiB glass-covered microwire,” J. Magn. Magn. Mater. 21, 243–247 (2000).

    Article  Google Scholar 

  25. A. Zhukov, V. Zhukova, J.M. Blanco, and J. Gonzalez, “Recent research on magnetic properties of glass-coated microwires,” J. Magn. Magn. Mater. 294, 182–192 (2005).

    Article  CAS  Google Scholar 

  26. P. Corte-León, V. Zhukova, M. Ipatov, J. M. Blanco, J. Gonzalez, and A. Zhukov, “Engineering of magnetic properties of Co-rich microwires by joule heating,” Intermetallics 105, 92–98 (2019).

    Article  Google Scholar 

  27. A. Zhukov, M. Ipatov, A. Talaat, J. M. Blanco, B. Hernando, L. Gonzalez-Legarreta, J. J. Suñol, and V. Zhukova, “Correlation of crystalline structure with magnetic and transport properties of glass-coated microwires,” Crystals 7, 41 (2017).

    Article  Google Scholar 

  28. A. Talaat, V. Zhukova, M. Ipatov, J. J. del Val, J. M. Blanco, L. Gonzalez-Legarreta, B. Hernando, M. Churyukanova, and A. Zhukov, “Engineering of magnetic softness and magnetoimpedance in Fe-rich microwires by nanocrystallization”, JOM 68, 1563–1571 (2016).

    Article  CAS  Google Scholar 

  29. H. Chiriac, T.A. Ovari, and C.S. Marinescu, “Giant magneto-impedance effect in nanocrystalline glass-covered wires,” J. Appl. Phys. 83, 6584–6586 (1998).

    Article  CAS  Google Scholar 

  30. V. Zhukova, J. M. Blanco, M. Ipatov, M.Churyukanova, S. Taskaev, and A. Zhukov, “Tailoring of magnetoimpedance effect and magnetic softness of Fe-rich glass-coated microwires by stress-annealing,” Sci. Rep. 8, 3202 (2018).

    Article  CAS  Google Scholar 

  31. V. Zhukova, J.M. Blanco, M. Ipatov, J. Gonzalez, M. Churyukanova, and A. Zhukov, “Engineering of magnetic softness and giant magnetoimpedance effect in Fe-rich microwires by stress-annealing,” Scr. Mater. 142, 10–14 (2018).

    Article  CAS  Google Scholar 

  32. V. Zhukova, M. Ipatov, A. Talaat, J. M. Blanco, M. Churyukanova, S. Taskaev, and A. Zhukov, “Effect of stress-induced anisotropy on high frequency magnetoimpedance effect of Fe and Co-rich glass-coated microwires,” J. Alloy Compd. 735, 1818–1825 (2018).

    Article  CAS  Google Scholar 

  33. M. Vázquez and D.-X. Chen, “The magnetization reversal process in amorphous wires”, IEEE Trans. Magn., 31 (2), 1229–1239 (1995).

    Article  Google Scholar 

  34. V. Zhukova, J. M. Blanco, M. Ipatov, and A. Zhukov, “Effect of transverse magnetic field on domain wall propagation in magnetically bistable glass-coated amorphous microwires,” J. Appl. Phys. 106, 113914 (2009).

    Article  Google Scholar 

  35. N. A. Usov, A. S. Antonov, and A. N. Lagar`kov, “Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy,” J. Magn. Magn. Mater., 185, 159–173 (1998).

    Article  CAS  Google Scholar 

  36. A. Zhukov, V. Zhukova, V. Larin, J.M. Blanco, and J. Gonzalez, “Tailoring of magnetic anisotropy of Fe-rich microwires by stress induced anisotropy,” Phys. B 384, 1–4 (2006).

    Article  CAS  Google Scholar 

  37. A. Kunz and S. C. Reiff, “Enhancing domain wall speed in nanowires with transverse magnetic fields,” J. Appl. Phys. 103, 07D903 (2008).

    Article  Google Scholar 

  38. J. Yang, G. S. D. Beach, C. Knutson, and J. L. Erskine, “Magnetic domain-wall velocity enhancement induced by a transverse magnetic field,” J. Magn. Magn. Mater. 397, 325–332 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Spanish MCIU under PGC2018-099530-B-C31 (MCIU/AEI/FEDER, UE) and by the Government of the Basque Country under PIBA 2018-44 and by the Univ. Basque Country under the scheme of “Ayuda a Grupos Consolidados” (Ref.: GIU-18/192) projects. The authors thank for technical and human support provided by SGIker of UPV/EHU (Medidas Magneticas Gipuzkoa) and European funding (ERDF and ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zhukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukova, V., Corte-Leon, P., González-Legarreta, L. et al. Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness GMI Effect and Domain Wall Dynamics of Amorphous Microwires. Phys. Metals Metallogr. 121, 316–321 (2020). https://doi.org/10.1134/S0031918X20040183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20040183

Keywords:

Navigation