Skip to main content
Log in

Separations in steels subjected to controlled rolling, followed by accelerated cooling

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2017

Abstract

Zones on the fracture surfaces of Charpy specimens and profiles of the fractures of these specimens are examined using impact-bending tests carried out in the temperature range of +20 to–90°C and fractography. The specimens were cut out of hot-rolled plates produced from 05G2B super-low-carbon steels that contained Ti, Nb, V, and Cu microadditives using controlled rolling, followed by accelerated cooling. A detailed analysis of separations, including a study of the morphology, number, area of separations, and the surrounding stress-relaxation zones, and the structure of the walls, has allowed us to identify the mechanisms of the origination and growth of the separations. It has been found that the correlated changes in the length, width, and depth of the separations are accompanied by the formation and expansion of the stress-relaxation zones around the separations. The rate of expansion of the area of these zones is higher than that of the area of the separations, which favors the macroplastic fracture of the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Pyshmintsev, A. Gervasyev, V. C. Olalla, R. Petrov, A. Arabey, “Mechanical and metallurgical aspects of the resistance to ductile fracture propagation in the new generation of gas pipelines,” Proc. 10th Int. Pipeline Conf. (IPC 2006) (Canada, Calgary, 2014), Vol. 3, pp 57–68.

    Google Scholar 

  2. L. I. Efron, Material Science in “Large” Metallurgy. Pipe Steels (Metallurgiya, Moscow, 2012) [in Russian].

    Google Scholar 

  3. I. Yu. Pyshmintsev, A. Gervasyev, R. H. Petrov, V. C. Olalla, and L. Kestens, “Crystallographic texture as a factor enabling ductile fracture arrest in high strength pipeline steel,” Mater. Sci. Forum 702–703, 770–773 (2012).

    Google Scholar 

  4. V. M. Farber, I. Yu. Pyshmintsev, A. B. Arabei, V. A. Khotinov, N. V. Lezhnin, and A. M. Mal’tseva, “Model of Cleavage,” Steel in Translation 42, 393–398 (2012).

    Article  Google Scholar 

  5. V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, N. A. Tereshchenko, and T. I. Tabatchikova, “Effect of increasing impact toughness on the formation of a lay-ered structure upon hot rolling of a ferritic steel,” Dokl.-Phys. 55, 334–337 (2010).

    Article  Google Scholar 

  6. D. A. Mirzaev, I. L. Yakovleva, N. A. Tereshchenko, I. V. Gervas’eva, D. V. Shaburov, and A. V. Panov, “Structural aspect of delamination crack formation during the HTMT of steels with a ferritic structure,” Phys. Met. Metallogr. 106, 186–195 (2008).

    Article  Google Scholar 

  7. L. I. Gladshtein, P. D. Odesskii, and I. I. Vedyakov, Layered Destruction of Steels and Welded Joints (Inter-met Inzhiniring, Moscow, 2009) [in Russian].

    Google Scholar 

  8. G. Manucci and G. Demofonti, “Control of ductile fracture propagation in X80 gas linepipe,” in Proc. Int. Pipeline Tech. Conf., Beijing, 2010, pp. 86–115.

  9. W. Guo, H. Dong, M. Lu, and X. Zhao, “The coupled effects of thickness and delamination on cracking resis-tance of X70 pipeline steel,” Int. J. Press. Vessels Pip. 79, 403–412 (2002).

    Article  Google Scholar 

  10. C. Ruggieri and E. Hippert, Jr., “Delamination effects of fracture behavior of a pipeline steel: A numerical investigation of 3-D crack front fields and constraint,” Int. J. Press. Vessels Pip. 128, 18–35 (2015).

    Article  Google Scholar 

  11. M. S. Joo, D.-W. Suh, J. H. Bae, and H. K. D. H. Bhadeshia, “Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel,” Mater. Sci. Eng., A 546, 314–322 (2012).

    Article  Google Scholar 

  12. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai, “Delamination effect on impact properties of ultra fine-grained low-carbon steel processed by warm cali-ber rolling,” Metall. Mater. Trans. A 41, 341–355 (2010).

    Article  Google Scholar 

  13. S.-Y. Shin, S. Hong, J. -H. Bae, K. Kim, and S. Lee, “Separation phenomenon occurring during the Charpy impact test of API X80 pipeline steels,” Metall. Mater. Trans. A 40, 2333–2349 (2009).

    Article  Google Scholar 

  14. A. B. Arabei, I. Yu. Pyshmintsev, M. A. Shtremel’, A. G. Glebov, A. O. Struin, and A. M. Gervas’ev, “Resistance of X80 steel to ductile-crack propagation in major gas lines,” Steel in Translation, 39, 715–724 (2009).

    Google Scholar 

  15. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, I. V. Gervas’eva, and L. Yu. Egorova, “Texture effect on cold resistance of the welded steel subjected to thermo-chemical treatment,” Deform. Razrush. Mater., No. 1, 34–40 (2010).

    Google Scholar 

  16. Yu. D. Morozov, M. Yu. Matrosov, S. Yu. Nastich, and A. B. Arabei, “New generation of high-strength tube steels with a ferrite-bainite structure,” Metallurgist 52, 450–456 (2008).

    Article  Google Scholar 

  17. V. M. Farber, A. B. Arabei, I. Yu. Pyshmintsev, and V. A. Khotinov, “Fractographycal criteria of cold resis-tance of X80 strength group tubes,” Proizvodstvo Prokata, No. 1, 7–11 (2011).

    Google Scholar 

  18. I. Yu. Pyshmintsev, A. B. Arabei, V. M. Farber, V. A. Khotinov, N. V. Lezhnin, “Laboratory criteria of crack resistance of high-strength steels for gas main pipelines,” Phys. Met. Metallogr. 113, 411–417 (2012).

    Article  Google Scholar 

  19. I. I. Vedyakov, D. V. Konin, and P. D. Odesskii, Steel Constructions of Scyscrapers (ASV, Moscow, 2014) [in Russian].

    Google Scholar 

  20. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, L. Yu. Egorova, I. V. Gervas’eva, A. A. Kruglova, E. I. Khlusova, and V. V. Orlov, “Effect of thermome-chanical treatment on the cold resistance of low-carbon low-alloy welding steel,” Phys. Met. Metallogr. 109, 289–299 (2010).

    Article  Google Scholar 

  21. S.-Y. Shin, “Effects of microstructure on tensile, Charpy impact, and crack tip opening displacement properties of two API X80 pipeline steels,” Metall. Mater. Trans. A 44, 2613–2624 (2013).

    Article  Google Scholar 

  22. Electron Backscatter Diffraction in Materials Science, Ed. by A. J. Schwartz, M. Kumar, B. L. Adams, and D. P. Field (Springer Science, LLC, 2009).

  23. A. B. Arabei, V. M. Farber, N. V. Lezhnin, I. Yu. Pysh-mintsev, O. V. Selivanova, A. G. Glebov, and V. E. Bazhenov, “Microstructure and disperse phases of X80 pipe steel for gas pipelines,” Steel in Translation 42, 14–21 (2012).

    Article  Google Scholar 

  24. V. M. Farber, A. B. Arabei, I. Yu. Pyshmintsev, O. V. Selivanova, V. A. Khotinov, A. O. Struin, and N. V. Lezhnin, “Disperse phase contribution to the for-mation of structure and properties of high-strength tube steels,” Proizvodstvo Prokata, No. 1, 14–21 (2011).

    Google Scholar 

  25. M. I. Gol’dshtein and M. V. Farber, Disperse Hardening of Steel (Metallurgiya, Moscow, 1979) [in Russian].

    Google Scholar 

  26. V. M. Farber, A. B. Arabei, I. Yu. Pyshmintsev, O. V. Selivanova, V. A. Khotinov, N. V. Lezhnin, and M. A. Valov, “Effect of low-temperature heating on mechanical properties of tube steels of K65 (X80) strength category,” Proizvodstvo Prokata, No. 1, 35–39 (2012).

    Google Scholar 

  27. Yu. A. Skakov, “Natural and artificial aging of technical iron,” in Proc. Sci.-Pract. Semin. “Aging Problems of Main Pipeline Steels” (Univers. Kniga, Nizhny Novgorod, 2006), pp. 86–94 [in Russian].

    Google Scholar 

  28. V. M. Farber, V. A. Khotinov, A. N. Morozova, N. V. Lezhnin, and T. Martin, “Diagnosis of the frac-ture and fracture energy of high-ductility steels in instrumented impact-bending tests,” Metal Sci. Heat Treat. 57, 329–333 (2015).

    Article  Google Scholar 

  29. L. R. Botvina, Fracture: Kinetics, Mechanisms, General Laws (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  30. Ya. B. Fridman, Mechanical Properties of Metals. Ch. 1. Deformation and Fracture (Mashinostroenie, Moscow, 1979) [in Russian].

    Google Scholar 

  31. M. A. Shtremel’, Alloy Strength. Part 1. Lattice Defects (MISiS, Moscow, 1989) [in Russian].

    Google Scholar 

  32. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (Wiley, 1996).

    Google Scholar 

  33. I. M. Safarov, A. V. Korznikov, R. M. Galeev, S. N. Sergeev, S. V. Gladkovskii, E. M. Borodin, and I. Yu. Pyshmint-sev, “Strength and impact toughness of low-carbon steel with fibrous ultrafine-grained structure,” Phys. Met. Metallogr. 115, 295–302 (2014).

    Article  Google Scholar 

  34. V. E. Panin, Yu. V. Grinyaev, V. I. Danilov, L. B. Zuev, V. E. Egorushkin, T. F. Elsukova, N. A. Koneva, E. V. Kozlov, T. M. Poletika, S. N. Kul’kov, S. G. Psakh’e, S. Yu. Korostelev, and N. V. Chertova, Structural Levels of Plastic Deformation and Destruction (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  35. V. M. Farber, A. B. Arabei, I. Yu. Pyshmintsev, O. V. Selivanova, V. A. Khotinov, A. S. Yurovskikh, and N. V. Lezhnin, “Disperse phases in high-tensile low-carbon micro-alloyed steels for welded constructions,” Materialovedenie, No. 1, 11–16 (2012).

    Google Scholar 

  36. V. M. Farber and O. V. Selivanova, “Classification of stress relaxation processes and their development upon plastic deformation of metals,” Russ. Metall. (Metally) 2001, 101–105 (2001).

    Google Scholar 

  37. V. M. Farber, O. V. Selivanova, O. N. Polukhina, I. Yu. Pyshmintsev, and A. B. Arabei, “Contributions of structural factors to the strength of K65 steels,” Steel in Translation 42, 687–690 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khotinov.

Additional information

Original Russian Text © V.M. Farber, V.A. Khotinov, S.V. Belikov, O.V. Selivanova, N.V. Lezhnin, A.N. Morozova, M.S. Karabonalov, A.Yu. Zhilyakov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 4, pp. 422–436.

An erratum to this article is available at http://dx.doi.org/10.1134/S0031918X1702017X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farber, V.M., Khotinov, V.A., Belikov, S.V. et al. Separations in steels subjected to controlled rolling, followed by accelerated cooling. Phys. Metals Metallogr. 117, 407–421 (2016). https://doi.org/10.1134/S0031918X16040050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16040050

Keywords

Navigation