Skip to main content
Log in

The effect of process conditions in heat-assisted boronizing treatment on the tensile and bending strength characteristics of the AISI-304 austenitic stainless steel

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this study, AISI 304 austenitic stainless steel surface was boronized with nanoboron and ekabor-III powders at 950 and 1000°C for 2 and 4 hours period by solid-state box boronizing method. Then, behaviors of the boronized specimen in the microstructure, three-point bending, and tensile strength characteristics were investigated. As a result of the boriding process, the boride layer thickness in the range of 23–67 µm and microhardness value in the range of 1020–2200 HV have been obtained according to the increase in processing time and temperature and to the particle size of the boron source (0, 1). The coating layer on boronized specimens did not exhibit any sign of reaction caused by the tensile strength applied until the yield point was in both tests. Although the particle size of the boron agents was more effective on the boronized specimen’s bending and tensile strength behaviors, it was observed that processing temperature and its duration are effective as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Atik, “Mechanical properties and wear strength in aluminum–alumina composites,” Mater. Struct. 31, 418–422 (1998).

    Article  Google Scholar 

  2. E. Atik, U. Yunker, and C. Meric, “The effect of conventional heat treatment and boronizing on abrasive wear and corrosion of SAE 1010, SAE 1040, D2 and 304 steels,” Tribol. Int. 36, 155–161 (2003).

    Article  Google Scholar 

  3. M. Mathew and P. K. Rajendrakumar, “Optimization of process parameters of boro-carburized low carbon steel for tensile strength by Taquchi method with grey relational analysis,” Mater. Design, 32, 3637–3644 (2011).

    Article  Google Scholar 

  4. D. A. Brandt and J. C. Warner, Metallurgy Fundamentals, Goodheart-Willcox Company Inc., GoodheartWillcox Publisher, Tinley Park, Il., 301, 219–222 (2005).

    Google Scholar 

  5. M. Ulutan, “Investigation of mechanical behaviors of an AISI 4140 steel after surface hardening and coating processes,” Ph. D. Dissertation, Osmangazi Univ., Department of Mechanical Engineering, 2007.

    Google Scholar 

  6. E. Kaluç, “Effect of spot welding parameters on the tensile and shear strength and intergrannular corrosion of ferritic–austenitic stainless steel couple,” Ph. D. Dissertation, Istanbul Tech. Univ., Gradute School of Natural and Applied Sciences, 1988).

    Google Scholar 

  7. A. Abou-Elazm, R. Abdel-Karim, I. Elmahallawi, and R. Rashad, “Correlation between the degree of sensitization and stress corrosion cracking susceptibility of type 304H stainless steel,” Corr. Sci. 51, 203–208 (2009).

    Article  Google Scholar 

  8. S. Taktak, “Some mechanical properties of borided AISI H13 and 304 steels,” Mater. Design 8, 1836–1843 (2004).

    Google Scholar 

  9. M. Keddam and S. M. Chentouf, “A diffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack bonding,” Appl. Surf. Sci. 252, 293–299 (2005). DOI:10.1016/j.apsusc.2005.01.016.

    Article  Google Scholar 

  10. I. Usta, I. Ozbek, M. Ipek, C. Bindal, and A. H. Ucisik, “The characterization of boride pure tungsten,” Surf. Coat. Technol. 194, 330–334 (2005).

    Article  Google Scholar 

  11. I. Uslu, H. Comert, M. Ipek, O. Ozdemir, and C. Bindal, “Evaluation of borides formed on AISI P20 steel,” Mater. Design 28, 55–61 (2007).

    Article  Google Scholar 

  12. U. Sen, S. Sen, and F. Yilmaz, “An evaluation of some properties of borides deposited on boronized ductile iron,” J. Mater. Process. Technol. 148, 1–7 (2004).

    Article  Google Scholar 

  13. M. Kulka and A. Pertek, “The importance of carbon content beneath iron borides after boriding of chromium and nickel-based lowcarbon steel,” Appl. Surf. Sci, 214, 161–171 (2003).

    Article  Google Scholar 

  14. E. Rodn, G. Cabeo, G. Laudien, S. Biemer, K.-T. Rie, and S. Hoppe, “Plasma-assisted boriding of industrial components in a pulsed D.C. glow discharge,” Surf. Coat. Technol., 116, 229–233 (1999).

    Google Scholar 

  15. I. Campos, G. Ramirez, U. Figueroa, J. Martinez, and O. Morales, “Evaluation of boron mobility on the phases FeB, Fe2B and diffusion zone in AISI 1045 and M2 steels,” Appl. Surf. Sci. 253, 3469–3475 (2007).

    Article  Google Scholar 

  16. O. Özdemir, M.A. Omar, M. Usta, S. Zeytin, C. Bindal, A.H. Ucisik, “An investigation on boriding kinetics of AISI 316 stainless steel,” Vacuum 83, 175–179 (2009).

    Article  Google Scholar 

  17. C. Martini, G. Palombarini, and M. Carbucicchio, “Mechanism of thermochemical growth of iron borides on iron,” J. Mater. Sci. 39, 933–937 (2004).

    Article  Google Scholar 

  18. I. Uslu, H. Comert, M. Ipek, F.G. Celebi, O. Özdemir, and C. Bindal, “A comparison of borides formed on AISI 1040 and AISI P20 steels,” Mater. Design 28, 1819–1826 (2007).

    Article  Google Scholar 

  19. A. Günen, M. S. Gök, A. Erdoğan, et. al. “Investigation of micro-abrasion wear behavior of boronized stainless steel with nanoboron powders,” Tribol. Trans., 274, 1065–1070 (2013).

    Google Scholar 

  20. H. J. Hunger and G. Trute, “Boronizing to produce wear-resistant surface layers,” Heat Treat. Metals, 2, 31–39 (1994).

    Google Scholar 

  21. X. Tian, Y. L. Yang, S. J. Sun, J. An, Y. Lu, Z. G. Wang, “Tensile properties of boronized N80 steel tube cooled by different methods,” J. Mater. Eng. Perform. 18, 162–167 (2009).

    Article  Google Scholar 

  22. Y. Kayali, “Investigation of the diffusion kinetics of borided stainless steels,” Phys. Met. Metallogr. 114, 1061–1068 (2013).

    Article  Google Scholar 

  23. R. Malik, D. Burch, M. Z. Bazant and G. Ceder, “Particle size dependence of the ionic diffusivity,” Nano Lett. 10, 4123–4127 (2010).

    Article  Google Scholar 

  24. C. Meriç, S. Sahin, and S. S. Yilmaz, “Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances,” Mater. Res. Bull. 35, 2165–2172 (2000).

    Article  Google Scholar 

  25. A. Galibois, O. Boutenko, and B. Voyzelle, “Mécanisme de formation des couches borurées sur les aciers a haut Carbone.—Technique des pates,” Acta Metall. 28, 1753–1764 (1980).

    Article  Google Scholar 

  26. K. Hulka, J. M. Gray, and F. Heisterkamp, Metallurgical Concept and Full-Scale Testing of a High Toughness H 2 S Resistant 0.03%–0.10%Nb Steel, Niobium Tech. Report, NbTR 16/90, (1990).

    Google Scholar 

  27. C. M. Suh, S. H. Kim, J. H. Lee, and N. S. Hwang, “Variation of boride layer characteristics by heating conditions and materials,” Int. J. Modern Phys. B 17, 1795–1800 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Günen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günen, A., Kurt, B., Somunkιran, İ. et al. The effect of process conditions in heat-assisted boronizing treatment on the tensile and bending strength characteristics of the AISI-304 austenitic stainless steel. Phys. Metals Metallogr. 116, 896–907 (2015). https://doi.org/10.1134/S0031918X15090021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15090021

Keywords

Navigation