Skip to main content
Log in

Local anisotropy induced by an external indenter in a magnetic film

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The magnetic characteristics of a film under the effect of an external indenter have been studied. It has been shown that magnetoelastic interactions induce additional magnetic anisotropy, which can be either positive or negative, depending on the values of the magnetoelastic constants. The effect of the geometrical parameters of the problem on the magnetoelastic energy has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization. Dynamical and Topological Solitons (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  2. A. B. Borisov and V. V. Kiselev, Nonlinear Waves, Solitons, and Localized Structures in Magnets. Vol. I. Quasi-One-Dimensioned Magnetic Solitons (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2009) [in Russian].

    Google Scholar 

  3. A. B. Borisov and V. V. Kiselev, Nonlinear Waves, Solitons, and Localized Structures in Magnets. Vol. II. Topological Solitons, Two-Dimensional and Three-Dimensional “Patterns” (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2011) [in Russian].

    Google Scholar 

  4. S. E. Gouvea, G. S. Wysin, F. G. Mertens, and A. R. Bishop, “Vortices in the classical two-dimensional Heisenberg model,” Phys. Rev. B: Condens. Matter 39, 11840–11849 (1989).

    Article  Google Scholar 

  5. B. A. Ivanov and A. K. Kolezhuk, “Solitons in low-dimensional antiferromagnets (review),” Fiz. Nizk. Temp. 21, 355–389 (1995).

    Google Scholar 

  6. Nonlinearity in Condensed Matter, Ed. by A. R. Bishop, R. Ecke, and S. Gubernatis (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  7. Nonlinear Coherent Structures in Physics and Biology, Ed. by K. H. Spatchek and F. G. Mertens (Plenum, New York, 1994).

    Google Scholar 

  8. Fluctuation Phenomena: Disorder and Nonlinearity, Ed. by A. R. Bishop, S. Jimenez, and L. Vazquez, (World Scientific, Singapore, 1995).

    Google Scholar 

  9. G. S. Kandaurova and A. E. Sviderskii, “Observation of antiwave state and stable dynamical structures in multudomain magnetic films,” Pis’ma Zh. Eksper. Teor. Fiz. 14, 777–780 (1988).

    Google Scholar 

  10. G. S. Kandaurova and A. E. Sviderskii, “Excited state and spiral dynamical domain structure in magnetics,” Pis’ma Zh. Eksper. Teor. Fiz. 47, 410–419 (1988).

    Google Scholar 

  11. G. S. Kandaurova and A. E. Sviderskii, “Self-organization processes in miltidomain magnetic media and formation of stable dynamical structures,” Zh. Eksper. Teor. Fiz. 97, 1218–1229 (1990).

    Google Scholar 

  12. G. S. Kandaurova, “New phenomena in the low-frequency dynamics of magnetic domain ensembles,” Phys.-Usp. 45, 1051–1072 (2002).

    Article  Google Scholar 

  13. F. V. Lisovskii and E. G. Mansvetova, “Spiral domains in magnetic films,” Fiz. Tverd. Tela 31, 273–275 (1989).

    Google Scholar 

  14. A. B. Borisov, “Spiral vortices in ferromagnets,” JETP Lett. 73, 242–245 (2001).

    Article  Google Scholar 

  15. A. B. Borisov, S. A. Zykov, N. A. Mikushina, and A. S. Moskvin, “Vortices and magnetic structures of the target type in a two-dimensional ferromagnet with anisotropic exchange,” Phys. Solid State 44, 324–332 (2002).

    Article  Google Scholar 

  16. G. A. Smolenskii, V. V. Lemanov, G. M. Nedlin, M. P. Petrov, and R. V. Pisarev, Physics of Magnetic Dielectrics (Nauka, Leningrad, 1974).

    Google Scholar 

  17. V. V. Kondrat’ev and I. Sh. Trakhtenberg, “Hertzian fracture of a metal with a rigid coating,” Phys. Met. Metallogr. 80, 605–610 (1995).

    Google Scholar 

  18. Ya. S. Uflyand, Integral Transformations in Problems of Elasticity Theory (Nauka, Leningrad, 1968).

    Google Scholar 

  19. H. Hertz, “On the contact of elastic solids,” in Miscellaneous Papers, Ed. by H. Hertz (Macmillan, London, 1896).

    Google Scholar 

  20. A. D. Dichenko and V. V. Nikolaev, “Local magnetic anisotropy caused by linear defects in ferromagnets,” in Physical Properties of Magnetic Materials. Collection of Papers, Ed. by Ya. S. Shur (Ural. Nauchn. Tsentr AN SSSR, Sverdlovsk, 1982), pp. 110–115 [in Russian].

    Google Scholar 

  21. K. P. Belov, G. I. Kataev, R. Levitin, S. L. Nikitin, and V. I. Sokolov, “Giant magnetostriction,” Phys.-Usp. 26, 518–542 (1983).

    Google Scholar 

  22. W. Nowacki, Teoriaęsprżystości (Theory of Elasticity) (Pan-stwowe Wydawnictwo Naukowe, Warszawa, 1970; Mir, Moscow, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Borisov.

Additional information

Original Russian Text © A.B. Borisov, E.S. Demina, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 3, pp. 242–247.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.B., Demina, E.S. Local anisotropy induced by an external indenter in a magnetic film. Phys. Metals Metallogr. 115, 226–231 (2014). https://doi.org/10.1134/S0031918X14030028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14030028

Keywords

Navigation