Skip to main content
Log in

Deformation-heat treatment of Nb-Ti superconductors using severe plastic deformation methods

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

We have presented the results of an investigation and analysis of the effect of deformation-heat treatment using multidirectional deformation and equal-channel angular and multiple angular pressing on the mechanical properties and critical parameters of low-temperature superconductors based on Nb-Ti alloys. Primary attention has been given to the equal-channel multiple angular pressing which leads to a substantial improvement of their functional characteristics. Physical mechanisms of identifying the effects of structural modifications have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Shepelev, Yu. A. Manzhur, L. D. Yurchenko, L. V. Panteenko, T. Chepurnaya, and Kh. Bork, “The scientific analysis of world information flows on superconductors NbTi and Nb3Sn,” Vopr. At. Nauki Tekhn. Ser.: Vakuum, Chist. Mater., Sverkhprovod., No. 1, 88–92 (2002).

    Google Scholar 

  2. L. D. Cooley, P. J. Lee, and D. C. Larbalestier, “Conductor processing of low-T c materials: The alloy Nb-Ti,” in Handbook of Superconducting Materials (Inst. Phys., Bristol, 2003), Vol.1, chapt. B.3.3.2, pp.603–639.

    Google Scholar 

  3. V. I. Sokolenko and Ya. D. Starodubov, “Effect of the low-temperature deformation on the superconducting parameters of monatomic and composite superconductors,” Vopr. At. Nauki Tekh. Ser.: Vakuum, Chist. Mater., Sverkhprovod., No. 5, 33–45 (2000).

    Google Scholar 

  4. O. V. Chernyi, N. F. Andrievskaya, V. O. Ilicheva, G. E. Storozhilov, P. J. Lee, and A. A. Squitieri, “The microstructure and critical current density of Nb48 wt % Ti superconductor with very high alpha-Ti precipitate volume and very high critical current,” Adv. Cryog. Eng. 48, 883–890 (2002).

    Google Scholar 

  5. A. M. Grishin, “Interaction of a vortex with a boundary between anisotropic superconductors,” Fiz. Nizk. Temp. (Kharkov) 9, 277–283 (1983).

    Google Scholar 

  6. D. C. Larbalestier, A. W. West, W. Starch, W. Warnes, W. Lee, P. McDonald, W. O’Larey, and P. Hemachalam, “High critical current densities in industrial scale composites made from high homogeneity Nb46.5Ti,” IEEE Trans. Magn. 21, 269–272 (1985).

    Article  Google Scholar 

  7. E. P. Romanov, S. V. Sudareva, E. N. Popova, and T. P. Krinitsina, Nizkotemperaturnye i vysokotemperaturnye sverkhprovodniki i kompozity na ikh osnove (Low-Temperature and High-Temperature Superconductors and Related Composites) (Ural. Otd. Ross. Akad. Nauk, 2009).

    Google Scholar 

  8. P. J. Lee and D. C. Larbalestier, “Niobium-titanium superconducting wires: Nanostructures by extrusion and wire drawing,” Wire J. Int. 36(2), 61–66 (2003).

    CAS  Google Scholar 

  9. P. J. Lee, “Abridged metallurgy of ductile alloy superconductors,” in Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, New York, 1999), Vol. 21, pp.75–87.

    Google Scholar 

  10. L. D. Cooley, P. J. Lee, and D. C. Larbalestier, “Flux pinning mechanism of proximity-coupled planar defects in conventional superconductors: Evidence that magnetic pinning is the dominant pinning mechanism in niobium-titanium alloy,” Phys. Rev. B: Condens. Matter 53, 6638–6652 (1996).

    Article  CAS  Google Scholar 

  11. J. F. Li, P. X. Zhang, X. H. Liu, J. S. Li, Y. Feng, S. J. Du, T. C. Wang, W. T. Liu, G. Grunblatt, C. Verwaerde, and G. K. Hoang, “The microstructure of NbTi superconducting composite wire for ITER project,” Physica C (Amsterdam) 468, 1840–1842 (2008).

    Article  CAS  Google Scholar 

  12. L. D. Cooley, P. D. Jablonski, and P. J. Lee, “Strongly enhanced critical current density in Nb 47 wt % Ti having a highly aligned microstructure,” Appl. Phys. Lett. 58, 2984–2986 (1991).

    Article  CAS  Google Scholar 

  13. C. Meingast and D. C. Larbalestier, “Quantitative description of a very-high critical current density Nb-Ti superconductor during its final optimization strain: II. Flux pinning mechanisms,” J. Appl. Phys. 66, 5971–5983 (1989).

    Article  CAS  Google Scholar 

  14. C. Bormio-Nunes, M. J. R. Sandim, and L. Ghivelder, “Composition gradient as a source of pinning in Nb-Ti and NbTa-Ti superconductors,” J. Phys.: Condens. Matter 19, 446204 (2007).

    Google Scholar 

  15. C. Bormio-Nunes, R. M. N. Gomes, M. A. Tirelli, and L. Ghivelder, “Diffusion studies and critical current in superconducting Nb-Ti-Ta artificial pinning center wire,” J. Appl. Phys. 98, 043907 (2005).

    Article  Google Scholar 

  16. C. Bormio-Nunes, M. J. R. Sandim, E. R. Edwards, and L. Ghivelder, “Artificial pinning center Nb-Ti superconducting wire for AC applications,” Supercond. Sci. Technol. 19, 1063–1067 (2006).

    Article  CAS  Google Scholar 

  17. V. A. Ksenofontov, M. B. Lazareva, T. I. Mazilova, I. M. Mikhailovskii, G. E. Storozhilov, and O. V. Chernyi, “Local distribution of elements in the β-phase of the superconducting niobium-titanium alloy,” Fiz. Nizk. Temp. (Kharkov) 34, 1127–1130 (2008).

    Google Scholar 

  18. P. J. Lee, J. C. McKinnell, and D. C. Larbalestier, “Microstructure control in high TiNbTi alloys,” IEEE Trans. Magn. 25, 1918–1921 (1989).

    Article  CAS  Google Scholar 

  19. J. Parrel, P. J. Lee, and D. C. Larbalestier, “Cold work loss during heat treatment and extrusion of Nb-46.5 wt % Ti composites as measured by microhardness,” IEEE Trans. Appl. Supercond. 3, 734–737 (1993).

    Article  Google Scholar 

  20. G. L. Dorofejev, E. Y. Klimenko, and S. V. Frolov, “Current carrying capacity of superconductors with artificial pinning centers,” Proc. 9th Int. Conf. on Magnet Technology, Villigen: Swiss Inst. Nucl. Res., 1985, p. 564–566.

    Google Scholar 

  21. P. D. Jablonski, P. J. Lee, and D. C. Larbalestier, “Artificial two-phase Nb-Ti nanostructures using powder metallurgy techniques,” Appl. Phys. Lett. 65, 767–769 (1994).

    Article  CAS  Google Scholar 

  22. R. W. Heussner, C. Bormio-Nunes, L. D. Cooley, and D. C. Larbalestier, “Artificial pinning center Nb-Ti superconductors with alloyed Nb pins,” IEEE Trans. Appl. Supercond. 7, 1142–1145 (1997).

    Article  Google Scholar 

  23. R. Z. Valiev and I. V. Aleksandrov, Nanostrukturnye materialy, poluchennye intensivnoi plasticheskoi deformatsii (Nanostructural Materials Obtained by Severe Plastic Deformation) (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  24. R. Z. Valiev and I. V. Aleksandrov, Ob“emnye nanostrukturnye metallicheskie materialy (Bulk Nanostructural Metallic Materials) (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  25. Y. Beygelzimer, D. Orlov, and V. Varyukhin, “A new severe plastic deformation method: Twist extrusion,” Proc. Conf. Minerals, Metals and Materials Society (TMS) “Ultrafine Grained Materials II”, Washington, 2002, pp. 297–304.

    Google Scholar 

  26. V. M. Segal, “Slip line solutions, deformation mode and loading history during equal channel angular extrusion,” Mater. Sci. Eng., A 345, 36–46 (2003).

    Article  Google Scholar 

  27. M. I. Mazurskii and F. U. Enikeev, “On some principles of homogeneous ultra-fine-grained structure by metal pressure forming,” Kuzn.-Shtamp. Proizv., No. 7, 15–18 (2000).

    Google Scholar 

  28. Y. T. Zhu and J. Y. Huang, “Properties and nanostructures of materials processed by SPD techniques,” Proc. Conf. Minerals, Metals and Materials Society (TMS) “Ultrafine Grained Materials II”, Washington, 2002, pp. 331–340.

    Google Scholar 

  29. Ya. E. Beigel’zimer, V. N. Varyukhin, D. V. Orlov, and S. G. Synkov, Vintovaya ekstruziya protsess nakopleniya deformatsii (Spiral Extrusion-Process of Deformation Accumulation) (TEAN, Donetsk, 2003) [in Russian].

    Google Scholar 

  30. D. N. Borisov, P. V. Fursikov, and B. P. Tarasov, “Alloys and composites of magnesium for hydrogen accumulation,” II mezhdunarodnyi forum “Vodorodnye tekhnologii dlya razvivayushchegosya mira” (Proc. 2nd Int. Forum “Hydrogen Technologies for Developing World”) (Moscow, 2008).

    Google Scholar 

  31. O. V. Chornii, Ya. D. Starodubov, O. I. Volchok, and G. E. Storozhilov, Ukr. Patent 42487, Byull. Izobret., 2001, No. 9.

    Google Scholar 

  32. G. E. Storozhilov, N. F. Andrievskaya, M. A. Tikhonovskii, M. P. Starolat, I. N. Shapoval, V. A. Beloshenko, N. I. Matrosov, and V. V. Chishko, “Processes of structure formation in the NT-50 alloy induced by combined effects of various severe plastic deformations,” Fiz. Tekh. Vys. Davlenii 21(1), 102–110 (2011).

    CAS  Google Scholar 

  33. N. F. Andrievskaya, V. S. Okovit, T. Yu. Rudycheva, M. P. Starolat, G. E. Storozhilov, M. A. Tikhonovskii, P. A. Khaimovich, and I. N. Shapoval, “Evolution of the structure and properties of the NT-50 alloy upon severe plastic deformations,” Fiz. Tekh. Vys. Davlenii 19(2), 136–142 (2009).

    CAS  Google Scholar 

  34. V. M. Azhazha, O. V. Chernyi, G. E. Storozhilov, N. F. Andrievskaya, and T. Yu. Rudycheva, “Strained state of Nb-Ti alloy after multidirectional treatment,” Vopr. At. Nauki Tekhn. Ser.: Vakuum, Chist. Mater., Sverkhprovod. 14(6), 136–139 (2004).

    Google Scholar 

  35. G. E. Storozhilov, O. V. Chernyi, I. N. Shapoval, N. F. Andrievskaya, and V. O. Il’icheva, “Character of changes in the microstructural parameters, critical current density, and pinning force upon multidirectional deformation of Nb-Ti alloy,” Fizika kondensirovannogo sostoyaniya veshchestva pri nizkikh temperaturakh: mezhdunarodnaya konferentsiya: tezisy dokladov (Proc. Int. Conf. on the Physics of Condensed State of Substances at Low Temperatures), Kharkov, 2006, p. 102.

    Google Scholar 

  36. O. V. Chernyi, G. E. Storozhilov, N. F. Andrievskaya, V. O. Ilichova, Y. D. Starodubov, O. I. Volchok, L. A. Chirkina, M. B. Lazareva, and V. S. Okovit, “Structure and properties of differently directed deformed niobium-titanium alloy,” IEEE Trans. Appl. Supercond. 15, 3502–3505 (2005).

    Article  CAS  Google Scholar 

  37. T. C. Lowe and R. Z. Valiev, Investigations and Applications of Severe Plastic Deformation (Kluwer, Dordrecht, 2000).

    Book  Google Scholar 

  38. V. M. Segal, V. I. Reznikov, V. I. Kopylov, D. A. Pavlik, and V. F. Malyshev, Protsessy plasticheskogo strukturoobrazovaniya metallov (Processes of Plastic Structure Formation of Metals), (Nauka i Tekhnika, Minsk, 1994) [in Russian].

    Google Scholar 

  39. V. M. Segal, A. K. Fedotov, V. I. Kopylov, and A. N. Leonov, “Superconducting properties of niobium deformed by simple shear: Transition temperature, critical field and electrical resistance,” Dokl. Akad. Nauk BSSR 22, 333–335 (1978).

    CAS  Google Scholar 

  40. A. K. Fedotov, V. M. Segal, A. N. Leonov, and V. I. Kopylov, “Critical current density in superconducting state of niobium deformed by simple shear,” Dokl. Akad. Nauk BelSSR 22, 791–793 (1978).

    CAS  Google Scholar 

  41. V. I. Kopylov, A. N. Leonov, V. M. Segal, and A. K. Fedotov, “Effect of cyclic shear deformation on superconducting properties of niobium,” in Fizikokhimicheskii analiz sverkhprovodyashchikh splavov (Physical and Chemical Analysis of Superconducting Alloys) (Moscow, 1979), pp. 181–185 [in Russian].

    Google Scholar 

  42. V. A. Vozilkin, A. F. Prekul, V. T. Rakin, N. V. Volkenshtein, and N. N. Buinov, “Study of the dependence of superconducting properties of titanium-47 wt % niobium alloy,” Fiz. Met. Metalloved. 86, 655–657 (1968).

    Google Scholar 

  43. K. Nakashima, Z. Horita, M. Nemoto, and T. G. Langdon, “Development of a multi-pass facility for equalchannel angular pressing to high total strains,” Mater. Sci. Eng., A 281, 82–87 (2000).

    Article  Google Scholar 

  44. V. N. Varyukhin, V. Z. Spuskanyuk, N. I. Matrosov, A. B. Dugadko, B. A. Shevchenko, E. A. Medvedskaya, L. F. Sennikova, A. V. Spuskanyuk, and E. A. Pavlovskaya, “Equal-channel multiangle extrusion,” Fiz. Tekh. Vys. Davlenii 11(1), 31–39 (2001).

    Google Scholar 

  45. E. O. Medveds’ka, M. I. Matrosov, O. B. Dugadko, V. Z. Spuskanyuk, V. O. Beloshenko, and B. A. Shevchenko, Ukr. Patent 58015, Byull. Izobret., 2003, No. 7.

    Google Scholar 

  46. O. B. Dugadko, M. I. Matrosov, V. M. Varyukhin, V. Z. Spuskanyuk, V. O. Beloshenko, E. O. Medveds’ka, O. A. Davidenko, and B. A. Shevchenko, Ukr. Patent 62615, Byull. Izobret., 2003, No. 12.

    Google Scholar 

  47. N. I. Matrosov, L. F. Sennikova, V. V. Chishko, E. A. Pavlovskaya, N. F. Andrievskaya, and V. V. Makarenko, “Structure and properties of NbTi alloy after thermomechanical treatment using equalchannel multiangle pressing,” Vopr. Materialoved. 48(4), 12–21 (2006).

    Google Scholar 

  48. V. A. Beloshenko, N. I. Matrosov, V. V. Chishko, E. A. Pavlovskaya, L. F. Sennikova, V. Z. Spuskanyuk, O. N. Mironova, E. A. Medvedskaya, and B. A. Shevchenko, “Structure and properties of 60T alloy after combined plastic deformation,” Metallofiz. Noveishie Tekhnol. 29, 347–357 (2007).

    CAS  Google Scholar 

  49. V. A. Beloshenko, T. E. Konstantinova, N. I. Matrosov, V. Z. Spuskanyuk, V. V. Chishko, D. Gajda, A. J. Zaleski, V. P. Dyakonov, R. Puzniak, and H. Szymczak, “Equal-channel multi-angle pressing effect on the properties of NbTi alloy,” J. Supercond. Novel Magn. 22, 505–510 (2009).

    Article  CAS  Google Scholar 

  50. B. G. Lazarev, V. A. Ksenofontov, I. M. Mikhailovskii, and O. A. Velikodnaya, “Nanostructure of niobiumtitanium superconducting alloy,” Fiz. Nizk. Temp. (Kiev) 24(3), 272–277 (1998).

    Google Scholar 

  51. V. V. Rybin, Bol’shie plasticheskie deformatsii i razrushenie metallov (Large Plastic Deformations and Fracture of Metals) (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  52. N. I. Matrosov, V. V. Chishko, V. P. D’yakonov, N. G. Kisel’, E. A. Pavlovskaya, L. F. Sennikova, O. N. Mironova, and E. A. Medvedskaya, “Effect of the degree of deformation by equal-channel multi-angle pressing on the structure and properties of NbTi alloy,” Fiz. Tekh. Vys. Davlenii 18(3), 98–103 (2008).

    CAS  Google Scholar 

  53. N. I. Matrosov, V. V. Chishko, L. F. Sennikova, E. A. Pavlovskaya, O. N. Mironova, and E. A. Medvedskaya, “Effect of a heat treatment on the properties of superconducting wire obtained with the use of equalchannel multiangle pressing,” Vopr. Materialoved. 50(2), 60–69 (2007).

    Google Scholar 

  54. V. A. Beloshenko, N. I. Matrosov, V. V. Chishko, E. A. Pavlovskaya, L. F. Sennikova, and E. A. Medvedskaya, “Phase composition, structure, and properties of niobium-titanium alloy after combined plastic deformation and long-term heat treatment,” Fiz. Tekh. Vys. Davlenii 18(1), 63–68 (2008).

    CAS  Google Scholar 

  55. G. K. Zelenskii, V. Ya. Fil’kin, A. P. Golub’, I. N. Gubkin, Yu. A. Gulyaikin, V. P. Kosenko, V. L. Mette, A. D. Nikulin, E. V. Nikulenkov, L. V. Potanina, E. I. Plashkin, P. I. Slabodchikov, O. F. Shevyakova, B. V. Yakovlev, V. A. Vasil’ev, A. V. Zlobin, and A. I. Nikulin, “Development of composite superconductors for magnets of an accelerating-accumulating complex,” Vopr. At. Nauki Tekhn. Ser.: At. Materialoved., No. 9, 9–18 (1989).

    Google Scholar 

  56. V. A. Beloshenko, N. I. Matrosov, V. V. Chishko, V. P. D’yakonov, L. F. Sennikova, O. N. Mironova, E. A. Medvedskaya, and B. A. Shevchenko, “Equalchannel multiangle pressing of a multifilamentary superconducting composite,” Fiz. Tekh. Vys. Davlenii 19(2), 129–135 (2009).

    CAS  Google Scholar 

  57. V. A. Beloshenko, N. I. Matrosov, V. V. Chishko, V. Z. Spuskanyuk, E. A. Pavlovskaya, L. F. Sennikova, E. A. Medvedskaya, O. N. Mironova, D. Gaida, A. Zaleskii, and R. Puzhnyak, “Effect of equal-channel multiangular pressing and heat treatment on the properties of an Nb-Ti superconductor,” Russ. Metall. (Metally), No. 5, 421–425 (2009).

    Google Scholar 

  58. V. A. Beloshenko, E. A. Pavlovskaya, N. I. Matrosov, L. F. Sennikova, V. V. Chishko, and E. A. Medvedskaya, “Structure and strain hardening of a Ti-40 at % Nb alloy produced by equal-channel multiangular pressing and hydroextrusion,” Russ. Metall. (Metally), No. 3, 230–235 (2007).

    Google Scholar 

  59. V. A. Beloshenko, N. I. Matrosov, V. V. Chishko, V. P. D’yakonov, E. A. Pavlovskaya, L. F. Sennikova, G. Shimchak, D. Gaida, A. Zaleskii, and S. Pekhota, “Properties of multifilamentary superconducting composites after equal-channel multiangular pressing,” Vopr. Materialov. 58(2), 59–65 (2009).

    Google Scholar 

  60. V. A. Beloshenko, N. Ied. Matrosov, V. Yu. Dmitrenko, V. V. Chishko, L. F. Sennikova, V. P. D’yakonov, R. Szymczak, D. Gajda, J. Pietoza, and S. Piechota, “Effect of the thermomechanical treatment with the use of equal-channel multiangular pressing on the mechanical and transport properties of multifilamentary superconductors,” Metallofiz. Noveishie Tekhnol. 32, 1601–1611 (2010).

    CAS  Google Scholar 

  61. M. Kulczyk, W. Pachla, A. Mazur, M. Sus-Ryszkowska, N. Krasilnikov, and K. J. Kurzydlowski, “Producing bulk nanocrystalline materials by combined hydrostatic extrusion and equal-channel angular pressing,” Mater.Sci.-Poland 25, 991–999 (2007).

    CAS  Google Scholar 

  62. V. A. Beloshenko, N. I. Matrosov, V. V. Chishko, O. N. Mironova, E. A. Medvedskaya, D. Gaida, A. Zaleskii, V. P. D’yakonov, R. Puzhnyak, and G. Shimchak, “Effect of combined deformation and heat treatment on the superconducting properties of niobium-titanium alloy,” Fiz. Nizk. Temp. (Kiev) 34, 768–772 (2008).

    Google Scholar 

  63. V. A. Beloshenko, V. V. Chishko, N. I. Matrosov, and V. P. D’yakonov, “Effect of the thermomechanical treatment with the use of equal-channel multiangular pressing on the superconducting properties of the NbTi alloy,” Fiz. Nizk. Temp. (Kharkov) 36(12), 1295–1299 (2010).

    Google Scholar 

  64. P. W. Anderson and J. B. Kim, “Hard superconductivity theory of the motion of Abricosov flux lines,” Rev. Mod. Phys. 36(11, pert 1), 39–43 (1964).

    Article  Google Scholar 

  65. E. J. Kramer, “Flux pinning in high-current carrying superconductors,” Adv. Cryog. Eng. (Materials) 28, 307–322 (1982).

    Article  CAS  Google Scholar 

  66. V. A. Beloshenko, N. I. Matrosov, V. Yu. Dmitrenko, V. V. Chishko, V. P. Dyakonov, R. Szymczak, D. Gajda, J. Pitoza, and S. Piechota, “Influence of equal-channel multi-angle pressing on mechanical and transport properties of a multi-fibrous NbTi superconductor,” High Press. Res. 31(1), 106–109 (2011).

    Article  CAS  Google Scholar 

  67. E. W. Collings, T. S. Kreilick, and E. Gregory, “Calorimetric studies of the superconducting transition as function of thermomechanical processing in fine filament Cu/NbTi composites,” Adv. Cryog. Eng. (Materials) 34, 1027–1032 (1988).

    CAS  Google Scholar 

  68. M. T. Naus, R. W. Heussner, and D. C. Larbalestier, “High field flux pinning and the upper critical field of Nb-Ti superconductors,” IEEE Trans. Appl. Supercond., No. 7, 1122–1125 (1997).

    Google Scholar 

  69. E. M. Savitskii, O. Khenkel’, and Yu. V. Efimov, Fizikokhimicheskie osnovy polucheniya sverkhprovodyashchikh materialov (Physico-Chemical Foundations of Production of Superconducting Materials) (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  70. V. A. Beloshenko, V. Yu. Dmitrenko, V. V. Chishko, V. I. Mikhailov, D. Gajda, J. Pientosa, S. Piechota, and V. P. D’yakonov, “Effect of thermomechanical treatment with the use of equal-channel multiangular pressing on the force of pinning in multifilamentary superconductor based on the niobium-titanium alloy,” Vopr. Materialovedeniya 67(3), 76–80 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Chishko.

Additional information

Original Russian Text © V.A. Beloshenko, V.V. Chishko, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 12, pp. 1075–1085.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beloshenko, V.A., Chishko, V.V. Deformation-heat treatment of Nb-Ti superconductors using severe plastic deformation methods. Phys. Metals Metallogr. 114, 992–1002 (2013). https://doi.org/10.1134/S0031918X13090032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X13090032

Keywords

Navigation