Skip to main content
Log in

Effect of sputtering on the samples of ITER-grade tungsten preliminarily irradiated by tungsten ions: Optical investigations

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The simultaneous effect of sputtering and neutron irradiation on the optical properties of tungsten mirrors has been considered, which was simulated by bombardment by 20-MeV W+6 ions. The action of charge-exchange atoms was imitated using Ar+ ions with an energy of 600 eV. The dependence of the structure of the surface and optical properties of tungsten on the fluence of Ar ions has been studied using optical microscopy, interferometry, reflectometry, and ellipsometry. It has been shown that irradiation with neutrons should introduce a significant additional contribution to the processes at the tungsten surface that occur under the effect of charge-exchange atoms. An analysis of experimental data obtained by using reflectometry and ellipsometry made it possible to suggest a realistic model of the process of surface modification for samples of ITER-grade tungsten (that were preliminarily irradiated by tungsten ions) using prolonged sputtering by Ar+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. Kolbasov, “19th Int. Conf. on Plasma Surface Interaction in Controlled Fusion Devices (PSI-19),” Vopr. At. Nauki Tekh., Ser. Termoyadernyi Sintez., No. 4, 48–69 (2010).

    Google Scholar 

  2. R. Behrisch, G. Federichi, A. Kukushkin, and D. Reiter, “Material erosion at the vessel walls of future fusion devices,” J. Nucl. Mater. 313–316, 388–392 (2003).

    Article  Google Scholar 

  3. V.Kh. Alimov, B. Tyburska-Püschel, S. Lindig, Y. Hatano, M. Balden, J. Roth, K. Isobe, M. Matsuyama, and T. Yamanishi, “Temperature dependence of surface morphology and deuterium retention in polycrystalline ITER-grade tungsten exposed to low-energy, high-flux D plasma,” J. Nucl. Mater. 420, 519–524 (2012).

    Article  CAS  Google Scholar 

  4. B. Tyburska, V. Kh. Alimov, O. V. Ogorodnikova, K. Schmid, and K. Ertl, “Deuterium retention in self-damaged tungsten,” J. Nucl. Mater. 395, 150–155 (2009).

    Article  CAS  Google Scholar 

  5. A. F. Bardamid, V. T. Gritsyna, V. G. Konovalov, D. V. Orlinskji, A. N. Shapoval, A. F. Shtan’, S. I. Solodovchenko, V. S. Vojtsenya, and K. I Yakomov, “Ion energy distribution effect on degradation of optical properties of ion bombarded copper mirrors,” Surf. Coatings Technol. 103–104, 365–369 (1998).

    Article  Google Scholar 

  6. A. I. Belyaeva, A. A. Galuza, V. F. Klepikov, V. V. Litvinenko, A. G. Ponomarev, M. A. Sagajdachny, K. A. Slatin, V. V. Uvarov, and V. T. Uvarov, “Spectral ellipsometric complex for early diagnostics of metal and alloy transformations,” Problems of Atomic Science and Technology. Ser.: Physics of Radiation Damages and Radiation Material Science, No. 2(60), 191–197 (2009).

    Google Scholar 

  7. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, 2007).

    Book  Google Scholar 

  8. A. I. Belyaeva, A. A. Galuza, and A. D. Kudlenko, “Program-hardware complex for microinterferometric studies,” Prib. Tekh. Eksp., No. 6, 135–136 (2008).

    Google Scholar 

  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985).

    Google Scholar 

  10. D. A. G. Bruggeman, “Berechnung vershiedener physikalisher Konstanten von heterogenen Substanzen,” Ann. Phys. 24, 636–679 (1935).

    Article  CAS  Google Scholar 

  11. A. I. Belyaeva, A. A. Galuza, and A. A. Savchenko, “Models of the surface of aluminum mirrors bombarded by ions from a deuterium plasma,” Phys. Met. Metallogr. 110, 144–152 (2010).

    Article  Google Scholar 

  12. Gorshkov, M.M., Ellipsometry (Sov. Radio, Moscow, 1974).

    Google Scholar 

  13. A. I. Belyaeva, I. V. Kolenov, A. A. Savchenko, A. A. Galuza, D. A. Akcenov, G. Raab, V. S. Vojtsenya, V. G. Konovalov, I. V. Ryzhkov, O. A. Skorik, S. I. Solodovchenko, and A. F. Bardamid, “Effect of grain size on resistance of mirrors from low-alloy copper alloy of the Cu-Cr-Zr system to ionic sputtering,” Vopr. At. Nauki Tekh., Ser. Termoyadernyi sintez, No. 4, 50–59 (2011).

    Google Scholar 

  14. V. S. Khmelevskaya, I. A. Antoshina, and M. N. Kordo, “Effect of long-range action in materials of different nature,” Phys. Met. Metallogr. 103, 619–623 (2007).

    Article  Google Scholar 

  15. N. P. Aparina, M. I. Guseva, B. N. Kolbasov, S. N. Korshunov, A. N. Mansurova, Yu. V. Martynenko, U. V. Borovitskaya, and L. I. Ivanov, “Some aspects of long-range effect,” Vopr. At. Nauki Tekh., Ser. Termoyadernyi sintez, No. 3, 18–27 (2007).

    Google Scholar 

  16. A. A. Gromov, Ya. S. Kvon, A. P. Il’in, and V. I. Vereshchagin, “Specific features of the oxidation of a tungsten nanopowder,” Russ. J. Phys. Chem. A 78, 1484–1487 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Belyaeva.

Additional information

Original Russian Text © A.I. Belyaeva, A.A. Galuza, I.V. Kolenov, V.G. Konovalov, A.A. Savchenko, O.A. Skorik, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 8, pp. 765–776.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaeva, A.I., Galuza, A.A., Kolenov, I.V. et al. Effect of sputtering on the samples of ITER-grade tungsten preliminarily irradiated by tungsten ions: Optical investigations. Phys. Metals Metallogr. 114, 703–713 (2013). https://doi.org/10.1134/S0031918X13060033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X13060033

Keywords

Navigation