Skip to main content
Log in

New interatomic potential for computation of mechanical and thermodynamic properties of uranium in a wide range of pressures and temperatures

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A new interatomic potential for uranium is proposed. The potential is constructed in terms of the embedded-atom method (EAM). As the reference data used for the optimization of potential functions, the values of forces, energies, and stresses obtained from ab initio computations have been employed. The potential has been applied for studies of properties of crystalline phases of uranium. It has been established that the lattice parameters of the α and Γ phases, the elastic moduli, the isochore, the room temperature isotherm, and the energies of vacancy formation are in good agreement with the available experimental data and calculated results in the framework of the density-functional theory. The potential suggested facilitates simulation of the first-order phase transitions between Γ uranium and liquid and between Γ and α uranium. The melting points of uranium at pressures of up to 80 GPa, and the temperature of the phase transition between the Γ phase and α phases, at ∼3 GPa have been determined. For the first time, atomistic simulation of the phase transition between α and Γ phases of uranium has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Sinha, G. J. Prasad, and P. V. Hegde, “Development, Preparation and Characterization of Uranium Molybdenum Alloys for Dispersion Fuel Application,” J. Alloys Compd. 473, 238–244 (2009).

    Article  CAS  Google Scholar 

  2. D. E. Burkes, R. Prabhakaran, and T. Hartmann, “Properties of DU-10 wt % Mo Alloys Subjected to Various Post-Rolling Heat Treatments,” Nucl. Eng. Design 240, 1332–1339 (2010).

    Article  CAS  Google Scholar 

  3. B. A. Hilton, “Review of Oxidation Rates of DOE Spent Nuclear Fuel,” Report ANL-00/24, Argonne National Laboratory, 2000.

  4. G. L. Hofman and M. K. Meyer, “Design of High Density Gamma-Phase Uranium Alloys for LEU Dispersion Fuel Applications,” Proc. Int. Conf. on Reduced Enrichment for Test Reactor, Sao Paulo, Brasil, 1998.

  5. P. Söderlind, “First-Principles Elastic and Structural Properties of Uranium Metal,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 085113 (2002).

    Article  Google Scholar 

  6. C. D. Taylor, “Evaluation of First-Principles Techniques for Obtaining Materials Parameters of α-Uranium and the (001) α-Uranium Surface,” Phys. Rev. B: Condens. Matter Mater. Phys. 77, 094119 (2008).

    Article  Google Scholar 

  7. G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector-Augmented Wave Method,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  8. S. Xiang, H. Huang, and L. M. Hsiung, “Quantum Mechanical Calculations of Uranium Phases and Niobium Defects in Gamma-Uranium,” J. Nucl. Mater. 375, 113 (2008).

    Article  CAS  Google Scholar 

  9. B. Beeler, B. Good, S. Rashkeev, C. Deo, M. Baskes, M. Okuniewski, “First-Principles Calculations for Defects in U,” J. Phys.: Condens. Matter 22, 505703 (2010).

    Article  CAS  Google Scholar 

  10. V. S. Krasnikov, A. Yu. Kuksin, A. E. Maier, and A. V. Yanilkin, “Plastic Deformation under High-Rate Loading: The Multiscale Approach,” Phys. Solid State 52, 1386–1396 (2010).

    Article  CAS  Google Scholar 

  11. S. V. Starikov and V. V. Stegailov, “Atomistic Simulation of the Premelting of Iron and Aluminum: Implications for High-Pressure Melting-Curve Measurements,” Phys. Rev. B: Condens. Matter Mater. Phys. 80, 220104 (2009).

    Article  Google Scholar 

  12. V. V. Stegailov and A. V. Yanilkin, “Structural Transformations in Single-Crystal Iron during Shock-Wave Compression and Tension: Molecular Dynamics Simulation,” J. Exp. Theor. Phys. 104, 928–935 (2007).

    Article  CAS  Google Scholar 

  13. T. T. Bazhirov, G. E. Norman, and V. V. Stegailov, “Cavitation in Liquid Metals under Negative Pressures. Molecular Dynamics Modeling and Simulation,” J. Phys.: Condens. Matter 20, 114113 (2008).

    Article  CAS  Google Scholar 

  14. A. Yu. Kuksin, G. E. Norman, V. V. Stegailov, A. V. Yanilkin, and P. A. Zhilyaev, “Dynamic Fracture Kinetics, Influence of Temperature and Microstructure in the Atomistic Model of Aluminum,” Int. J. Fracture 162 (1–2), 127–136 (2010).

  15. A. V. Yanilkin, P. A. Zhilyaev, A. Yu. Kuksin, G. E. Norman, V. V. Pisarev, and V. V. Stegailov, “Supercomputer Application for Molecular-Dynamics Modeling of Processes in Condensed Media,” Vychisl. Metody Programm. 11, 111–116 (2010).

    Google Scholar 

  16. S. V. Starikov, V. V. Stegailov, G. E. Norman, V. E. Fortov, M. Ishino, M. Tanaka, N. Khasegava, M. Nishikino, T. Okhba, T. Kaikhori, E. Ochi, T. Imazono, T. Kavachi, S. Tamotsu, T. A. Pikuz, I. Yu. Skobelev, and A. Ya. Faenov, “Laser Ablation of Gold: Experiment and Atomistic Simulation,” JETP Lett. 93, 642–647 (2011).

    Article  CAS  Google Scholar 

  17. D. K. Belashchenko, M. G. Zemlyanov, S. N. Ishmaev, and G. F. Syrykh, “Constructing Models of a Ni2B Amorphous Alloy from Diffraction Data and Inference of Interparticle Potentials Using the Delta Algorithm,” Phys. Met. Metallogr. 93, 501–506 (2002).

    Google Scholar 

  18. D. K. Belashchenko, D. E. Smirnova, and O. I. Ostrovskii, “Molecular-Dynamics Modeling of Liquid Uranium Thermophysical Properties,” Teplofiz. Vys. Temp. 4, 363–375 (2010).

    Google Scholar 

  19. M. I. Pascuet, J. R. Fernandez, and A. M. Monti, “Many-Body Interatomic Interaction for Uranium,” Proc. Int. Conf. on Multiscale Modeling of Microstructure Evolution in Materials, 2008, pp. 437–440.

  20. F. Ercolessi and J. B. Adams, “Interatomic Potentials from First-Principles Calculations: The Force-Matching Method,” Europhys. Lett. 26, 583 (1994).

    Article  CAS  Google Scholar 

  21. S. J. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys. 117, 1–10 (1995).

    Article  CAS  Google Scholar 

  22. G. Kresse and J. Furthmüller, “Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set,” Phys. Rev. B: Condens. Matter 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  23. J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy,” Phys. Rev. B: Condens. Matter 45, 13244–13249 (1992).

    Article  Google Scholar 

  24. C. S. Barrett, M. H. Mueller, and R. L. Hitterman, “Crystal Structure Variations in Alpha Uranium at Low Temperatures,” Phys. Rev. 129, 625–629 (1963).

    Article  CAS  Google Scholar 

  25. C.-S. Yoo, H. Cynn, and P. Söderlind, “Phase Diagram of Uranium at High Pressures and Temperatures,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, 10359–10362 (1998).

    Article  CAS  Google Scholar 

  26. M. S. Daw and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B: Condens. Matter 29, 6443–6453 (1984).

    Article  CAS  Google Scholar 

  27. D. K. Belashchenko, Computer Modeling of Liquid and Amorphous Substances (MISiS, Moscow, 2005) [in Russian].

    Google Scholar 

  28. P. Brommer and F. Gähler, “Effective Potentials for Quasicrystals from ab-initio Data,” Philos. Mag. 86, 753–758 (2006).

    Article  CAS  Google Scholar 

  29. G. Kaptay, G. Csicsovszki, and M. S. Yafhmaee, “Estimation of the Absolute Values of Cohesion Energies of Pure Metals,” Materials World, July 2001, http://mate-rialworld.fw.hu

  30. Y. Zhao, J. Zhang, D. W. Brown, D. R. Korzekwa, and R. S. Hixson, “Equations of State and Phase Transformation of Depleted Uranium DU-238 by High Pressure-Temperature Diffraction Studies,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 174104 (2007).

    Article  Google Scholar 

  31. M. S. Blanter, V. P. Glazkov, and V. A. Somenkov, “Anisotropy of Thermal Vibrations and Polymorphic Transformations in Lanthanum and Uranium,” Phys. Status Solidi B 246, 1044–1049 (2009).

    Article  CAS  Google Scholar 

  32. M. S. Blanter, V. P. Glazkov, V. A. Somenkov, V. K. Orlov, and A. V. Laushkin, “The Effect of Alloying on Thermal Displacements in Uranium and Plutonium Alloys and the Mechanism of Stabilization of High-Temperature Phases by Alloying,” Phys. Met. Metallogr. 101, 153–158 (2006).

    Article  Google Scholar 

  33. J. Akella, G. S. Smith, R. Grover, Y. Wu, and S. Martin, “Static EOS of Uranium to 100 GPa Pressure,” High. Pressure Res. 2, 295–302 (1990).

    Article  Google Scholar 

  34. H. Matter, J. Winter, and W. Triftshäuser, “Investigation of Vacancy Formation and Phase Transformation in Uranium by Positron Annihilation,” J. Nucl. Mater. 88, 273–278 (1980).

    Article  CAS  Google Scholar 

  35. J. R. Morris, C. Z. Wang, K. M. Ho, and C. T. Chan, “Melting Line of Aluminum from Simulations of Coexisting Phases,” Phys. Rev. B: Condens. Matter 49, 3109–3115 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.E. Smirnova, S.V. Starikov, V.V. Stegailov, 2012, published in Fizika Metallov i Metallovedenie, 2012, Vol. 113, No. 2, pp. 115–124.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, D.E., Starikov, S.V. & Stegailov, V.V. New interatomic potential for computation of mechanical and thermodynamic properties of uranium in a wide range of pressures and temperatures. Phys. Metals Metallogr. 113, 107–116 (2012). https://doi.org/10.1134/S0031918X12020147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X12020147

Keywords

Navigation