Skip to main content
Log in

Thickness of grain-boundary liquid phase and its effect on the mechanism of superplastic deformation

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

For a series of matrix aluminum alloys, an estimation of the thickness of the grain-boundary liquid phase under the optimum conditions of the manifestation of high-temperature superplasticity has been performed. It has been established that the contribution of grain-boundary sliding to the total deformation under these conditions is determining. It has been shown that the greater values of the thickness of the grain-boundary liquid phase correspond to greater values of the parameter m of the strain-rate sensitivity of the flow stress. The obtained dependences of the thickness of the grain-boundary liquid phase on m indicate that with increasing amount of the liquid phase the grain-boundary sliding progressively acquires features of viscous flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Bieler and A. K. Mukherjee, “The Role of Adiabatic Heating on High Rate Superplastic Elongation,” Scr. Metall. 24, 1003–1008 (1990).

    Article  CAS  Google Scholar 

  2. T. G. Nieh, J. Wadsworth, and T. Imai, “A Rheological View of High-Strain-Rate Superplasticity in Alloys and Metal-Matrix Composites,” Scr. Metall. Mater. 26, 703–708 (1992).

    Article  CAS  Google Scholar 

  3. S. K. Marya and G. Wyon, “Superplasticité a l’ambiante de l’aluminium a grain fin en liaison avec l’existence d’un film intergranulaire de solution solide riche en gallium,” J. Phys. Coll. 36, C4-309–C4-313 (1975).

    Article  Google Scholar 

  4. K. Higashi, T. G. Nieh, and J. Wadsworth, “Effect of Temperature on the Mechanical Properties of Mechanically-Alloyed Materials at High Strain Rates,” Acta Metal. Mater. 43, 3275–3282 (1995).

    Article  CAS  Google Scholar 

  5. V. N. Perevezentsev and Yu. V. Svirina, “High-Strain-Rate Superplasticity of Microcrystalline Alloys upon Local Melting of Grain Boundaries,” Zh. Tekh. Fiz. 68(12), 38–42 (1998).

    Google Scholar 

  6. M. Mabuchi, K. Higashi, and T. G. Langdon, “An Investigation of the Role of a Liquid Phase in Al-Cu-Mg Metal Matrix Composites Exhibiting High Strain Rate Superplasticity,” Acta Metall. Mater. 42, 1739–1745 (1994).

    Article  CAS  Google Scholar 

  7. T. G. Nieh and J. Wadsworth, “The Role of Liquid Phase on Superplasticity in Metals and Ceramics,” Mater. Sci. Forum 233–234, 383–398 (1997).

    Article  Google Scholar 

  8. M. C. Dang, J. J. Blandin, and B. Baudelet, “Flow Stress in a Material with Liquid Grain Boundaries under Different Test Conditions,” Acta Mater. 44, 3991–4002 (1996).

    Article  CAS  Google Scholar 

  9. M. Mabuchi, H. G. Jeong, K. Hiraga, and K. Higashi, “Partial Melting at Interfaces and Grain Boundaries for High-Strain-Rate Superplastic Materials,” Interface Sci. 4, 357–368 (1997).

    Article  Google Scholar 

  10. J. Koike, K. Miki, K. Maruyama, and H. Oikawa, “Effect of the Liquid Phase on the High-Temperature Tensile Ductility: From Embrittlement to Superplasticity,” Philos. Mag. A 78, 599–614 (1998).

    Article  CAS  Google Scholar 

  11. Y. Chino, M. Kobata, H. Iwasaki, and M. Mabuchi, “An Investigation of Compressive Deformation Behavior for AZ91 Mg Alloy Containing a Small Volume of Liquid,” Acta Mater. 51, 3309–3318 (2003).

    Article  CAS  Google Scholar 

  12. H. Iwasaki, M. Mabuchi, and K. Higashi, “The Role of Liquid Phase in Cavitation and Fracture in High-Strain-Rate Superplastic Si3N4p/Al Alloy Composite,” Mater. Sci. Forum 304–306, 645–650 (1999).

    Article  Google Scholar 

  13. Y. Takayama, T. Tozawa, and H. Kato, “Superplasticity and Thickness of Liquid Phase in the Vicinity of Solidus Temperature in a 7475 Aluminum Alloy,” Acta Mater. 47, 1263–1270 (1999).

    Article  CAS  Google Scholar 

  14. V. V. Bryukhovetskii, “On the Origin of High-Temperature Superplasticity of a Coarse-Grained Avial-Type Aluminum Alloy,” Phys. Met. Metallogr. 92, 99–103 (2001).

    Google Scholar 

  15. V. V. Bryukhovetskii, V. P. Poida, R. I. Kuznetsova, V. F. Klepikov, and A. V. Poida, “Superplastic Properties of Aluminum—Lithium Alloy 1421 at High Homological Temperatures,” Phys. Met. Metallogr. 94, 520–528 (2002).

    Google Scholar 

  16. A. V. Poida, V. V. Bryukhovetskii, D. L. Voronov, R. I. Kuznetsova, and V. F. Klepikov, “Superplastic Behavior of AMg6 Alloy at High Homological Temperatures,” Metallofiz. Noveishie Tekhnol. 27, 319–333 (2005).

    Google Scholar 

  17. V. V. Bryukhovetskii, V. P. Poida, A. V. Poida, D. R. Avramets, R. I. Kuznetsova, A. P. Kryshtal’, A. L. Samsonnik, and Kaafarani Ali Mahmoud, “Mechanical Properties and Structural Changes during Superplastic Deformation of 6111 Aluminum Alloy,” Metallofiz. Noveishie Tekhnol. 31, 1289–1302 (2009).

    CAS  Google Scholar 

  18. V. P. Poida, V. V. Bryukhovetskii, A. V. Poida, R. I. Kuznetsova, A. P. Kryshtal’, and Yu. Yu. Portash, “Superplasticity in AK4-1ch Alloy at High Homological Temperatures,” Metallofiz. Noveishie Tekhnol. 31, 1385–1398 (2009).

    CAS  Google Scholar 

  19. V. V. Bryukhovetskii, V. V. Litvinenko, V. F. Klepikov, R. I. Kuznetsova, V. P. Poida, V. F. Kivshik, and V. T. Uvarov, “Effect of Pulse Electron Irradiation on the Parameters of Duralumin Superplasticity,” Fiz. Khim. Obrab. Mater., No. 4, 33–38 (2002).

  20. V. K. Portnoi, O. V. Solov’eva, V. S. Levchenko, and Yu. V. Shevnyuk, “Superplasticity of Commercial Aluminum D19 Alloy,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 3, 50–53 (1995).

  21. I. I. Novikov, A. O. Nikiforov, V. I. Pol’kin, and V. S. Levchenko, “Mechanisms of Superplastic Deformation of AMg4 Aluminum Alloy,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 1, 43–48 (1996).

  22. Woo-Jin Kim, Dong-Wha Kum, and Ha-Guk Jeong, “Interface Structure and Solute Segregation Behavior in SiC/2124 and SiC/6061 Al Composites Exhibiting High-Strain-Rate Superplasticity,” J. Mater. Res. 16, 2429–2435 (2001).

    Article  CAS  Google Scholar 

  23. V. V. Bryukhovetskii, R. I. Kuznetsova, N. N. Zhukov, V. P. Poida, and V. F. Klepikov, “Liquid-Phase Nucleation and Evolution As a Cause of Superplasticity in Alloys of the Al-Ge System,” Phys. Status Solidi A 202, 1740–1750 (2005).

    Article  Google Scholar 

  24. C. L. Chen and M. J. Tan, “Cavity Growth and Filament Formation of Superplastically Deformed Al 7475 Alloy,” Mater. Sci. Eng., A 298, 235–244 (2001).

    Article  Google Scholar 

  25. V. V. Bryukhovetskii, V. P. Poyda, A. V. Poyda, R. I. Kuznetsova, Kaafarani Ali Mahmoud, and D. E. Pedun, “Phase Transformations and Structural Changes in the Course of the High-Temperature Superplastic Deformation of Aluminum Alloys,” Phys. Met. Metallogr. 110, 588–596 (2010).

    Article  Google Scholar 

  26. A. S. Tikhonov, Effect of Superplasticity of Metals and Alloys (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  27. R. Z. Valiev and O. A. Kaibyshev, “Dislocations in Grain Boundaries and Grain-Boundary Sliding upon Plastic Deformation,” Dokl. Akad. Nauk SSSR 236, 339–342 (1977).

    CAS  Google Scholar 

  28. O. A. Kaibyshev, V. V. Astanin, and R. Z. Valiev, “Grain-Boundary Sliding at Zinc-Bicrystal Deformation,” Dokl. Akad. Nauk SSSR 245, 1356–1358 (1979).

    CAS  Google Scholar 

  29. R. Z. Valiev and O. A. Kaibyshev, “Effect of Nonequilibrium of Grain Boundary Structure on the Behavior and Properties of Metals,” Dokl. Akad. Nauk SSSR 258, 92–95 (1981).

    CAS  Google Scholar 

  30. O. A. Kaibyshev, R. Z. Valiev, and N. K. Tsenev, “Effect of Grain Boundary State on Superplastic Flow,” Dokl. Akad. Nauk SSSR 278, 93–97 (1984).

    Google Scholar 

  31. V. V. Rybin and V. N. Perevezentsev, “On the Nature of Structural Superplasticity,” Pis’ma Zh. Tekh. Fiz. 7, 1203–1205 (1981).

    CAS  Google Scholar 

  32. V. N. Perevezentsev, V. V. Rybin, and A. N. Orlov, “Structural Transformations at Grain Boundaries and the Mechanisms of Deformation during Different Stages of Superplastic Flow,” Poverkhnost, No. 6, 134–142 (1982).

  33. V. N. Perevezentsev, V. V. Rybin, and V. N. Chuvil’deev, “Accumulation of Defects at Grain Boundaries and the Limiting Characteristics of Structural Superplasticity,” Poverkhnost, No. 10, 108–115 (1983).

  34. V. N. Perevezentsev, “Modern Concepts of the Nature of Structural Superplasticity,” in Problems of the Theory of Defects in Crystals (Nauka, Leningrad, 1987), pp. 85–100 [in Russian].

    Google Scholar 

  35. B. B. Straumal, Phase Transitions at Grain Boundaries (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  36. B. B. Straumal, B. Baretzky, O. A. Kogtenkova, A. B. Straumal, and A. S. Sidorenko, “Wetting of Grain Boundaries in Al by the Solid Al3Mg2 Phase,” J. Mater. Sci. 45, 2057–2061 (2010).

    Article  CAS  Google Scholar 

  37. B. Straumal, R. Valiev, O. Kogtenkova, P. Zieba, T. Czeppe, E. Bielanska, and M. Faryna, “Thermal Evolution and Grain Boundary Phase Transformations in Severely Deformed Nanograined Al-Zn Alloys,” Acta Mater. 56, 6123–6131 (2008).

    Article  CAS  Google Scholar 

  38. O. A. Kaibyshev, Superplasticity of Commercial Alloys (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  39. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Properties of Metals (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Bryukhovetskii, A.V. Poida, V.P. Poida, Yu.V. Kolomak, 2011, published in Fizika Metallov i Metallovedenie, 2011, Vol. 112, No. 5, pp. 552–560.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryukhovetskii, V.V., Poida, A.V., Poida, V.P. et al. Thickness of grain-boundary liquid phase and its effect on the mechanism of superplastic deformation. Phys. Metals Metallogr. 112, 526–533 (2011). https://doi.org/10.1134/S0031918X11030173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X11030173

Keywords

Navigation