Skip to main content
Log in

Nanostructural states in solids

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

On the basis of the joint approaches of nonequilibrium thermodynamics and physical mesomechanics, there is proposed a thermodynamic criterion of existence of a special class of pretransition two-phase nanostructural states in solids near the zero of their thermodynamic Gibbs potential. Such states determine the high structural instability of nanostructures in the external fields and are the basis of different nanotechnologies based on a “bottom-up” assemblying approach. It is suggested to call the materials characterized by nanostructural states as nanostructured. The shear-resistant materials with a grain size d < 100 nm, but being far from the zero of their thermodynamic Gibbs potential, may conveniently be classified as nanosized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Panin and V. E. Egorushkin, “Nonequilibrium Thermodynamics of a Deformed Solid As a Multiscale System. Corpuscular-Wave Dualism of Plastic Shear,” Fiz. Mezomekh. 11(5), 5–16 (2008) [Phys. Mesomech. 11 (3–4), 105–123 (2008).

    CAS  Google Scholar 

  2. V. E. Panin and V. E. Egorushkin, “Nanostructural States in Solids,” in Abstracts of Papers of the III AllRussia Conf. on Nanomaterials (Ural. Izd-vo, Ekaterinburg, 2009).

    Google Scholar 

  3. M. A. Leontovich, “About Free Energy of a Nonequilibrium State,” Zh. Eksp. Teor. Fiz. 8(7), 844–854 (1938).

    CAS  Google Scholar 

  4. V. E. Egorushkin, “Calibration Dynamic Theory of Defects in Inhomogeneously Deformed Media with a Structure. Behavior of the Interface,” Izv. Vyssh. Uchebn. Zaved., Fiz. 33(2), 51–68 (1990).

    MathSciNet  Google Scholar 

  5. T. F. Elsukova, V. E. Panin, Yu. F. Popkova, and O. Yu. Vaulina, “Study of Mechanisms of Plastic Deformation on a Mesolevel in the Tip of a Fatigue Crack upon Alternating Bending,” Fiz. Mezomekh. 12(3), (2010) (in press).

  6. R. Z. Valiev and N. V. Aleksandrov, Bulk Nanostructural Metallic Materials: Production, Structure and Properties (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  7. A. N. Tyumentsev, A. V. Korotaev, and Yu. P. Pinzhin, “High-Defective Structural States, Fields of Local Internal Stresses, and Cooperative Mechanisms of a Mesolevel of Deformation and Reorientation of Crystals in Nanostructural Metallic Materials,” Fiz. Mezomekh. 7(4), 35–54 (2004).

    CAS  Google Scholar 

  8. Synthesis and Properties of Nanocrystalline and Substructural Materials, Ed. by A. D. Korotaev (Izd-vo Tomsk. Univ., Tomsk, 2007) [in Russian].

    Google Scholar 

  9. A. M. Glezer and V. A. Pozdnyakov, “Conditions of the Formation of Different Defect Structures in the Process of Large Plastic Deformations,” Deformats. Razrush. Mater., No. 4, 9–15 (2005).

  10. I. V. Morokhov, V. I. Petinov, L. I. Trusov, and V. F. Petrunin, “Structure and Properties of Small Metallic Particles,” Usp. Fiz. Nauk 133(4), 653–692 (1981).

    CAS  Google Scholar 

  11. Abstracts of Papers of the Conf “Rusnanotekh’08” (ROSNANO, Moscow, 2008), Vols. 1–2 [in Russian].

  12. Abstracts of Papers of the All-Russia Conf. on Nanomaterials NANO-2009 (Ural. Izd-vo, Ekaterinburg, 2009).

  13. M. V. Chaikina, Mechanochemistry of Natural and Synthesized Apatites (Izd-vo Siber. Otdel. RAN, Filial GEO, Novosibirsk, 2002).

    Google Scholar 

  14. V. G. Vasil’ev, A. P. Nosov, E. V. Vladimirov, and A. K. Khripunov, “Use of Nanoliquid of Silver in Medicine,” in Abstracts of Papers of the All-Russia Conf. on Nanomaterials NANO-2009 (Ural. Izd-vo, Ekaterinburg, 2009), p. 218.

    Google Scholar 

  15. A. E. Ermakov, “Physics of Nanostructures of Condensed State,” in Abstracts of Papers of the All-Russia Conf. on Nanomaterials NANO-2009 (Ural. Izd-vo, Ekaterinburg, 2009), p. 23.

    Google Scholar 

  16. N. I. Noskova, “Structural Features, Strength, and Mechanisms of Deformation of Nanocrystalline Pure Metals and Alloys,” in Abstracts of Papers of the AllRussia Conf. on Nanomaterials NANO-2009 (Ural. Izdvo, Ekaterinburg, 2009), pp. 291–292.

    Google Scholar 

  17. A. S. Vorokh and A. A. Rempel’, “Atomic Structure of Cadmium Sulfide Nanoparticles,” Fiz. Tverd. Tela 49(1), 143–148 (2007). [Phys. Solid State 49 (1), 148–153 (2007)]

    Google Scholar 

  18. S. V. Tsybulya, “Nanostructure as a Factor of Stabilization of Metastable Phases and Nanostructured States,” in Abstracts of Papers of the All-Russia Conf. on Nanomaterials NANO-2009 (Ural. Izd-vo, Ekaterinburg, 2009), pp. 296–298.

    Google Scholar 

  19. A. M. Murzakaev, “High-Resolution Transmission Electron Microscopy in Studies of YSZ,” in Abstracts of Papers of the All-Russia Conf. on Nanomaterials NANO-2009 (Ural. Izd-vo, Ekaterinburg, 2009), p. 218.

    Google Scholar 

  20. V. G. Pushin, S. D. Prokoshkin, R. Z. Valiev, et al., Shape-Memory Alloys of Titanium Nickelide. Part I. Structure, Phase Transformations, and Properties (Izdvo UrO RAN, Ekaterinburg, 2006) [in Russian].

    Google Scholar 

  21. G. B. Khomutov, “Organized Colloid Nanosystems and Nanofilm Materials,” in Abstracts of Papers of the Conf. “Rusnanotekh’08” (ROSNANO, Moscow, 2008), Vol. 1, pp. 706–707.

    Google Scholar 

  22. G. B. Khomutîv, “Interfacially Formed Organized Planar Inorganic, Polymeric, and Composite Nanostructures,” Adv. Cîlloid Interface Sci. 111, 79–116 (2004).

    Article  Google Scholar 

  23. R. Wasa and S. Hayakawa, Handbook of Sputter Deposition Technology. Principles, Technology and Application (Noyes Publications, Westwood, NJ, 1991).

    Google Scholar 

  24. S. Chandraseckhar, Liquid Crystals (University Press, Cambridge, 1992).

    Book  Google Scholar 

  25. J. W. Steed and J. L. Atwood, Supramolecular Chemistry (Wiley, New York, 2000; Akademkniga, Moscow, 2007).

    Google Scholar 

  26. Yu. Ya. Gafner, “Nanoclusters and Nanodefects of Some FCC Metals: Origin, Structure, Properties,” Doctoral Dissertation in Mathematics and Physics (AGU, Abakan, 2006).

    Google Scholar 

  27. A. V. Ragulya and V. V. Skorokhod, Consolidated Nanostructural Materials (Naukova Dumka, Kiev, 2007) [in Russian].

    Google Scholar 

  28. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (UrO RAS, Ekaterinburg, 2003).

    Google Scholar 

  29. N. I. Noskova, E. G. Ponomareva, A. A. Glazer, et al., “The Effect of Preliminary Deformation and LowTemperature Annealing on Grain Size in Nanocrystalline Fe73.5Cu1Nb3Si13.5B9 Alloy Produced by Crystallization of Amorphous Ribbons,” Fiz. Met. Metalloved. 76(5), 171–173 (1993) [Phys. Met. Metallogr. 76 (5), 535–537 (1993)].

    Google Scholar 

  30. A. M. Glezer, S. V. Dobatkin, M. R. Plotnikova, and A. V. Shalimova, “Structure and Properties of Amorphous Alloys on the Base of Fe and Ni after Deformation in Bridgman Anvils,” in Abstracts of Papers of the Third All-Russia Conf. on Nanomaterials NANO 2009 (Ural. Izd-vo, Ekaterinburg, 2009), p. 9.

    Google Scholar 

  31. Y. Yoshizava, S. Oquma, and K. Yamauchi, “New Iron Based Soft-Magnetic Alloys Composed of Ultrafine Grain Structure,” J. App. Phys. 64(10) Part 2, 6044–6046 (1988).

    Article  ADS  Google Scholar 

  32. V. E. Panin, V. P. Sergeev, A. V. Panin, Nanostructuring of Surface Layers and Production of Nanostructured Coatings (TPU, Tomsk, 2008) [in Russian].

    Google Scholar 

  33. Nanostructured Coatings, Ed. by A. Covaleiro and J. T. de Hosson (Springer, Berlin, 2006).

    Google Scholar 

  34. V. E. Panin, V. P. Sergeev, A. V. Panin, and Yu. I. Pochivalov, “Nanostructuring of Surface Layers and Production of Nanostructured Coatings As an Effective Method of Strengthening of Modern Structural and Tool Materials,” Fiz. Met. Metalloved. 104(6), 650–660 (2007) [Phys. Met. Metallogr. 104 (6), 627–636 (2007)].

    CAS  Google Scholar 

  35. N. Dubrovinskaia, V. Solozhenko, and N. Miyajima, “Superhard Nanocomposite of Dense Polymorphs of Boron Nitride: Noncarbon Material has Reached Diamond Hardness,” Appl. Phys. Lett. 90, 101912 (2007).

    Article  ADS  Google Scholar 

  36. A. V. Manchukovskii, V. P. Stoyan, A. N. BlautBlachev, et al., “Nanocrystals and Nanothickness Films of Diamond-Like Aluminum Nitride: Synthesis, Structure, and Application,” in Modern Problems of Physics and Chemistry of Nanomaterials, Ed. by L. Yu. Tsivadze (Granitsa, Moscow, 2008) [in Russian].

    Google Scholar 

  37. V. S. Stubican, “Phase Equilibria and Metastabilities in the Systems ZrO2-MgO, ZrO2-CaO and ZrO2-Y2O3,” Advances in Ceramics, vol. 24A: Science and Technology of Zirconia III, Ed by S. Somiya, N. Yamamoto, and H. Yanagida (Am. Cer. Soc., Weterville, OH, 1988), pp. 71–82.

    Google Scholar 

  38. R. Z. Valiev, “Paradox of Strength and Plasticity of Bulk Nanostructural Materials,” in Abstracts of Papers of the XVII Int. Conf. “Physics of Strength and Plasticity of Materials”, Ed. by A. M. Shterenberg (SamGTU, Samara, 2009), p. 16 [in Russian]; Ros. Nanotechnol. 1 (1–2), 208–216 (2006).

    Google Scholar 

  39. R. A. Andrievskii and A. M. Glezer, “Strength of Nanostructures,” Usp. Fiz. Nauk 179(4), 337–358 (2009) [Phys.-Usp. 52 (4), 315–334 (2009)].

    Article  Google Scholar 

  40. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  41. V. E. Egorushkin, V. E. Panin, E. V. Savushkin, and Yu. A. Khon, “Strongly Excited States in Crystals,” Izv. Vyssh. Uchebn. Zaved., Fiz. 30(1), 9–33 (1987).

    CAS  Google Scholar 

  42. O. A. Kaibyshev and S. N. Faizova, “Diffusion under Superplastic Deformation,” Dokl. Akad. Nauk, Fiz. Khim. 361(4), 495–497 (1998) [Dokl. Phys. Chem. 361 (4–6), 237–242 (1998)].

    CAS  Google Scholar 

  43. V. E. Panin, N. S. Surikova, T. F. Elsukova, et al., “Nanostructured Interphase Boundaries in Aluminum upon Cyclic Severe Plastic Deformation,” Fiz. Mezomekh. 12(6), 5–15 (2009).

    CAS  Google Scholar 

  44. V. E. Panin, T. F. Elsukova, V. E. Egorushkin, et al., “Nonlinear Wave Effects of Curvature Solitons in Surface Layers of High-Purity Aluminum under Severe Plastic Deformation. I. Experiment,” Fiz. Mezomekh. 10(6), 21–32 (2007) [Phys. Mesomech. 11 (1–2), 63–73 (2008)].

    CAS  Google Scholar 

  45. L. S. Derevyagina, V. E. Panin, and A. I. Gordienko, “Self-Organization of Plastic Shears in Localized Deformation Macrobands in the Neck of High-Strength Polycrystals and Its Role in the Material Fracture under Uniaxial Tension,” Fiz. Mezomech. 10(4), 59–71 (2007) [Phys. Mesomech. 11 (1–2), 51–62 (2008)].

    CAS  Google Scholar 

  46. V. E. Panin and R. D. Strokatov, “Dynamics of Mesoscopic Structure and Superplasticity of Austenitic Alloys,” in Physical Mesomechanics and Computer Designing of Materials, Ed. by V. E. Panin (Nauka, Novosibirsk, 1995) [in Russian].

    Google Scholar 

  47. N. I. Noskova, “Mechanisms of Deformation and Fracture of Nanocrystalline Materials According to the Results of Studies by the in situ Method,” in Nanotechnology and Physics of Functional Nanocrystalline Materials, Vol. 1., Ed. by V. V. Ustinov and N. I. Noskova (Izd-vo UrO RAN, Ekaterinburg, 2005) [in Russian].

    Google Scholar 

  48. T. F. Elsukova and V. E. Panin, “The Effect of Scale Levels of Rotational Plastic Deformation Modes on the Strain Resistance of Polycrystals,” Fiz. Mezomekh. 12(3), 5–12 (2009) [Phys. Mesomech. 12 (3), 62–69 (2009)].

    CAS  Google Scholar 

  49. M. I. Karpov, V. P. Korzhov, and V. I. Vnukov, “Mechanical and Physical Properties of Multilayer Nanostructural Composites with Superconductor Layers,” in Abstracts of Papers of the Third All-Russia Conf. on Nanomaterials NANO-2009 (Ural. Izd-vo, Ekaterinburg, 2009), pp. 24–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.E. Panin, V.E. Egorushkin, 2010, published in Fizika Metallov i Metallovedenie, 2010, Vol. 110, No. 5, pp. 486–496.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panin, V.E., Egorushkin, V.E. Nanostructural states in solids. Phys. Metals Metallogr. 110, 464–473 (2010). https://doi.org/10.1134/S0031918X10110062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X10110062

Keywords

Navigation