Skip to main content
Log in

Thermomagnetic and Mössbauer studies of structural transformations caused in the amorphous Nd9Fe85B5 alloy by severe plastic deformation and annealing

  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Thermomagnetic analysis and Mössbauer spectroscopy were used to study the effect of severe plastic deformation (SPD) by high-pressure torsion (HPT) and subsequent annealing on structural transformations and formation of magnetic properties of rapidly quenched Nd9Fe85B6 alloy. The HPT of the Nd9Fe85B6 amorphous alloy was found to result in the precipitation of α-Fe nanocrystals and in changes in the structural state of the residual amorphous phase A′. In the annealed samples, there was revealed a great amount of nonequilibrium phases with different magnetizations. The total content of nonequilibrium phases depends on the annealing temperature and affects the exchange interaction between magnetically soft α-Fe nanocrystals and Nd2Fe14B nanocrystalline grains. The results obtained in this study can explain the differences between the high level of hysteresis properties of nanocrystalline materials, which was predicted theoretically, and low magnitudes realized in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Kneller and R. Hawin, “The Exchange-Spring Magnet: A New Material Principle for Permanent Magnets,” IEEE Trans. Magn. 27, 3588–3600 (1991).

    Article  CAS  ADS  Google Scholar 

  2. T. Schrefl, J. Fidler, and H. Kronmuller, “Remanence and Coercivity of Isotropic Permanent Magnets,” Phys. Rev. B: Condens. Matter 49, 6100–6110 (1994).

    CAS  ADS  Google Scholar 

  3. R. Fischer, T. Schrefl, H. Kronmuller, and J. Fidler, “Phase Distribution and Computed Magnetic Properties of High-Remanent Composite Magnets,” J. Magn. Magn. Mater. 150, 329–344 (1995).

    Article  CAS  ADS  Google Scholar 

  4. A. Manaf, R. A. Buckley, and H. A. Davies, “New Nanocrystalline High-Remanence Nd-Fe-B Alloys by Rapid Solidification,” J. Magn. Magn. Mater. 128, 302–306 (1993).

    Article  CAS  ADS  Google Scholar 

  5. L. Withanawasam, G. C. Hadjipanayis, and R. F. Krause, “Mechanically Alloyed Nanocomposite Magnets,” J. Appl. Phys. 76, 6646–6651 (1994).

    Article  ADS  Google Scholar 

  6. A. Zern, M. Seeger, J. Bauer, and H. Kronmuller, “Microsrtructural Investigations of Exchange Coupled and Decoupled Nanocrystalline NdFeB Permanent Magnets,” J. Magn. Magn. Mater. 184, 89–94 (1998).

    Article  CAS  ADS  Google Scholar 

  7. X. Y. Zhang, Y. Guan, L. Yang, and J. W. Zhang, “Crystallographic Texture and Magnetic Anisotropy of α-Fe Nd2Fe14B Nanocomposites Prepared by Controlled Melt Spinning,” Appl. Phys. Lett. 79, 2426–2428 (2001).

    Article  CAS  ADS  Google Scholar 

  8. Z. Chen, Y. Zhang, G. C. Hadjipanayis, et al., “Effect of Wheel Speed and Subsequent Annealing on the Microstructure and Magnetic Properties of Nanocomposite Pr2Fe14B/α-Fe Magnets,” J. Magn. Magn. Mater. 206, 8–16 (1999).

    Article  CAS  ADS  Google Scholar 

  9. M. Hamano, M. Yamasaki, H. Mizuguchi, et al., “Magnetic Properties of Amorphous Phase Remaining α-Fe/NdFeB Nanocomposite Alloys,” in Proc. 15th Int. Workshop on Rare-Earth Magnets and Their Application, Ed by L. Schultz and K.-H. Muller (MAT INFO, Dresden, 1998), pp. 199–204.

    Google Scholar 

  10. C. J. Yang, J. S. Han, E. B. Park, and E. C. Kim, “Characterization of Intergranular Phase in Nd8Fe86 − x NbxB6 (x =0, 1, 2, 3) Nanocomposite Magnets by Mössbauer Spectroscopy,” J. Magn. Magn. Mater. 301, 220–230 (2006).

    Article  CAS  ADS  Google Scholar 

  11. A. M. Gabay, A. G. Popov, V. S. Gaviko, et al., “Investigation of Phase Composition and Remanence Enhancement in Rapidly Quenched Nd9(Fe,Co)85B6 Alloys,” J. Alloys Compd. 237, 101–107 (1996).

    Article  CAS  Google Scholar 

  12. A. M. Gabay, A. G. Popov, V. S. Gaviko, et al., “The Structure and Magnetic Properties of Rapidly Quenched and Annealed Multi-Phase Nanocrystalline Nd9Fe9 1−x Bx Ribbons,” J. Alloys Compd. 245, 119–124 (1996).

    Article  CAS  Google Scholar 

  13. A. G. Popov, A. S. Ermolenko, V. S. Gaviko, et al., “Magnetic Hysteresis Properties and Structural Features of Nanocrystalline Nd9Fe84B7 Alloy Prepared both by Melt-Spinning and Severe Plastic Deformation,” in Proc. 16th Int. Workshop on Rare-Earth Magnets and Their Application, Ed. by H. Haneko, M. Homma, and M. Okada (Japanese Institute of Metals, Sendai, 2000), pp. 621–630.

    Google Scholar 

  14. A. G. Popov, V. S. Gaviko, N. N. Shchegoleva, et al., “Effect of High-Pressure Torsion Deformation and Subsequent Annealing on Structure and Magnetic Properties of Overquenched Melt-Spun Nd9Fe85B6 Alloy,” in Proc. 19th Int. Workshop on Rare-Earth Magnets and Their Application (Bejing, 2006), pp. 160–165.

  15. Li Wei, Li Lanlan, Nan Yun, Li Xiaohong, et al., “Controllable Nanocrystallization in Amorphous Nd9Fe85B6 via Combined Application of Severe Plastic Deformation and Thermal Annealing,” Appl. Phys. Lett., 91(6), 62509 (2007)

    Article  Google Scholar 

  16. A. G. Popov, V. S. Gaviko, N. N. Shchegoleva, et al., “High-Pressure-Torsion Deformation of Melt-Spun Nd9Fe85B6 Alloy,” Fiz. Met. Metalloved. 104(3), 251–260 (2007) [Phys. Met. Metallogr. 104 (3), 238–247 (2007)].

    CAS  Google Scholar 

  17. Li Wei, Li Lanlan, Nan Yun. et al., “Nanocrystallization and Magnetic Properties of Amorphous Nd9Fe85B6 Subjected to High-Pressure Torsion Deformation upon Annealing,” J. Appl. Phys. 104(2), 23912 (2008).

    Article  Google Scholar 

  18. V. S. Rusakov, Mössbauer Spectroscopy of Locally Inhomogeneous Systems (OPNI IYaF NYaTs RK, Almaty, 2000) [in Russian].

    Google Scholar 

  19. B. C. Cui, X. K. Sun, L. Y. Xiong, et al., “Relation between Structure and Magnetic Properties of Nd2(Fe,Co,Mo)14B/α-Fe Nanocomposite Magnets,” J. Alloys Compd. 340, 242–251 (2002).

    Article  CAS  Google Scholar 

  20. Z. Altounian, D. H. Ryan, and G. H. Tua, “A New Metastable Phase in the Nd-Fe-B System,” J. Appl. Phys. 64, 5723–5725 (1988).

    Article  CAS  ADS  Google Scholar 

  21. C. J. Yang and E. B. Park, “Mössbauer Study on Nd2Fe14B/Fe3B Composite Magnet Treated by an External Magnetic Field,” J. Magn. Magn. Mater. 168, 278–284 (1997).

    Article  CAS  ADS  Google Scholar 

  22. G. Le Caer and J. M. Dubois, “About the Asymmetries in Mössbauer Spectra of Magnetic Amorphous Transition Metal — Metalloid Alloy,” Phys. Status Solidi A 64, 275–282 (1981).

    Article  ADS  Google Scholar 

  23. T. Kobayashi, M. Yamasaki, and M. Hamano, “Mössbauer Study on Intergranular Phases in the BCC-Fe/NdFeB Nanocomposite Alloys,” J. Appl. Phys. 87(9 P), 6579–6581 (2000).

    Article  CAS  ADS  Google Scholar 

  24. K. H. J. Buschow, “New Permanent Magnet Materials,” Mater. Sci. Rep. 1, 1–64 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.G. Popov, V.V. Serikov, N.M. Kleinerman, 2010, published in Fizika Metallov i Metallovedenie, 2010, Vol. 109, No. 5, pp. 542–550.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, A.G., Serikov, V.V. & Kleinerman, N.M. Thermomagnetic and Mössbauer studies of structural transformations caused in the amorphous Nd9Fe85B5 alloy by severe plastic deformation and annealing. Phys. Metals Metallogr. 109, 505–513 (2010). https://doi.org/10.1134/S0031918X1005011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1005011X

Key words

Navigation