Skip to main content
Log in

On the problem of the formation of structural modifications in Ni nanoclusters

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The processes of melting and crystallization of Ni nanoclusters with a diameter to 3.6 nm have been studied by the molecular-dynamics method based on tight-binding potentials. The effect of the particle size on the stability of the structural modifications obtained has been investigated. The dependence of the process of the cluster-structure formation on the conditions of cooling from the liquid state has been noted. Upon slow crystallization, an fcc structure was mainly formed, whereas upon rapid cooling an icosahedral phase was formed in the majority of cases. Thus, the simulation performed indicates the possibility of some control of the structure formation of Ni clusters upon crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Wolf, Nanophysics and Nanotechnology (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  2. W. Fahrner, Nanotechnologie und Nanoprozesse (Springer, Berlin, 2003).

    Google Scholar 

  3. L. D. Marks, “Experimental Studies of Small Particle Structures,” Rep. Prog. Phys. 57, 603–649 (1994).

    Article  CAS  Google Scholar 

  4. G. Schmid, Nanoparticles (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  5. J. P. K. Doye and S. C. Hendy, “On the Structure of Small Lead Clusters,” Eur. Phys. J. D 22, 99–107 (2003).

    Article  CAS  Google Scholar 

  6. F. Baletto, C. Mottet, and R. Ferrando, “Microscopic Mechanisms of the Growth of Metastable Silver Icosahedra,” Phys. Rev. B: Condens. Matter Mater. Phys. 63, 155408 (2001).

    Google Scholar 

  7. P. Moriarty, “Nanostructured Materials,” Rep. Prog. Phys. 64, 297–381 (2001).

    Article  CAS  Google Scholar 

  8. J. A. Ascencio, M. Perez, and M. Jose-Yacaman, “A Truncated Icosahedral Structure Observed in Gold Nanoparticles,” Surf. Sci. 447, 73–80 (2000).

    Article  CAS  Google Scholar 

  9. J. M. Soler, M. R. Beltran, K. Michaelian, et al., “Metallic Bonding and Cluster Structure,” Phys. Rev. B: Condens. Matter Mater. Phys. 61, 5771 (2000).

    CAS  Google Scholar 

  10. F. Balleto, R. Ferrando, A. Fortunelli, et al., “Crossover among Structural Motifs in Transition and Noble-Metal Clusters,” J. Chem. Phys. 116, 3856–3863 (2002).

    Article  Google Scholar 

  11. H. S. Nam, M. Nong, B. D. Yu, et al., “Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism,” Phys. Rev. Lett. 89, 275502 (2002).

    Google Scholar 

  12. K. Mannien and M. Mannien, “Stacking Faults in Close-Packed Clusters,” Eur. Phys. J. D 20, 243–249 (2002).

    Article  Google Scholar 

  13. F. Baletto, C. Mottet, and R. Ferrando, “Non-Crystalline Structures in the Growth of Silver Nanoclusters,” Eur. Phys. J. D 16, 25–28 (2001).

    Article  CAS  Google Scholar 

  14. D. Reinhard, B. D. Hall, P. Berthoud, et al., “Unsupported Nanometer-Sized Copper Clusters Studied by Electron Diffraction and Molecular Dynamics,” Phys. Rev. B: Condens. Matter Mater. Phys. 58, 4917–4926 (1998).

    CAS  Google Scholar 

  15. B. D. Hall, “Debye Function Analysis of Structure in Diffraction from Nanometer-Sized Particles,” J. Appl. Phys. 87, 1666–1675 (2000).

    Article  CAS  Google Scholar 

  16. P.-A. Buffat, M. Flueli, R. Spycher, et al., “Crystallographic Structure of Small Gold Particles Studied by High-Resolution Electron Microscopy,” Faraday Discuss. 92, 173–187 (1991).

    Article  CAS  Google Scholar 

  17. J. A. Ascencio, C. Gutierrez-Wing, M. E. Espinosa, et al., “Structure Determination of Small Particles by HREM Imaging: Theory and Experiment,” Surf. Sci. 396, 349–368 (1998).

    Article  CAS  Google Scholar 

  18. F. Cleri and V. Rosato, “Tight-Binding Potentials for Transition Metals and Alloys,” Phys. Rev. B: Condens. Matter 48, 22–33 (1993).

    CAS  Google Scholar 

  19. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987)

    Google Scholar 

  20. H. S. Anderson, “Molecular Dynamics Simulations at Constant Pressure and/or Temperature,” J. Phys. Chem. 72, 2384–2395 (1980).

    Article  Google Scholar 

  21. S. Nosé, “A Unified Formulation of the Constant Temperature Molecular Dynamics Methods,” J. Phys. Chem. 81, 511–524 (1984).

    Article  Google Scholar 

  22. P. Krasnechtchekov, K. Albe, and R. S. Averback, “Simulations of the Inert Gas Condensation Process,” Z. Metallkd. 94, 1098–1105 (2003).

    Google Scholar 

  23. S. L. Gafner, J. J. Gafner, and S. V. Kosterin, “Formation of an Icosahedral Structure during Crystallization of Copper Nanoclusters,” in Copper. Better Properties for Innovative Products, Ed. by J.-M. Welter (Wiley-VCH, Weinheim, 2006).

    Google Scholar 

  24. Y. Qi, T. Cagin, W. L. Johnson, et al., “Melting and Crystallization in Ni Nanoclusters: The Mesoscale Regime,” J. Chem. Phys. 115, 385–394 (2001).

    Article  CAS  Google Scholar 

  25. Yu. Ya. Gafner, S. L. Gafner, and P. Entel’, “Formation of an Icosahedral Structure during Crystallization of Nickel Nanoclusters,” Fiz. Tverd. Tela 46(7), 1287–1290 (2004); [Phys. Solid State 46 (7), 1327–1330 (2004)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.L. Gafner, L.V. Redel’, Yu. Ya. Gafner, 2007, published in Fizika Metallov i Metallovedenie, 2007, Vol. 104, No. 2, pp. 189–195.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gafner, S.L., Redel’, L.V. & Gafner, Y.Y. On the problem of the formation of structural modifications in Ni nanoclusters. Phys. Metals Metallogr. 104, 180–186 (2007). https://doi.org/10.1134/S0031918X0708011X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X0708011X

PACS numbers

Navigation