Skip to main content
Log in

Amphibian Ontogeny: Major Trends, Mechanisms, and Paradoxes of Evolution

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The relative independence of ontogenetic processes, which is characteristic of amphibians, determines the possibility of shifts in the rate and timing of the ontogenetic events, or heterochronies. Heterochronies give rise to ontogenetic and morphological diversity in amphibians, which can occur without significant genetic changes. Heterochrony-related neoteny, miniaturization and paedomorphic underdevelopment, as well as loss of ancestral traits due to their transition into a latent capacities state with the possibility of secondary recapitulation are phenomena typical of both recent and fossil amphibians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akita, Y. and Miyazaki, K., Migration and cycle of reproduction of Onychodactylus japonicus in Mt. Hodatsu, Jpn. J. Herpetol., 1991, vol. 14, pp. 29–38.

    Article  Google Scholar 

  2. Anstis, M., Parker, F., Hawkes, T., Morris, I., and Richards, S.J., Direct development in some Australopapuan microhylid frogs of the genera Austrochaperina, Cophixalus and Oreophryne (Anura: Microhylidae) from northern Australia and Papua New Guinea, Zootaxa, 2011, vol. 3052, pp. 1–50.

    Article  Google Scholar 

  3. Bachmann, K., Temperature adaptations of amphibian embryos, Am. Nat., 1969, vol. 103, pp. 115–130. http://www.jstor.org/stable/2459260.

    Article  Google Scholar 

  4. Bahir, M.M., Meegaskumbura, M., Manamendra-Arachchi, K., Schneider, C.J., and Pethiyagoda, R., Reproduction and terrestrial direct development in Sri Lankan shrub frogs (Ranidae: Rhacophorinae: Philautus), Raffles Bull. Zool., 2005, Suppl. 12, pp. 339–350.

  5. Beachy, C.K., Effect of predatory larval Desmognathus quadramaculatus on growth, survival, and metamorphosis of larval Eurycea wilderae, Copeia, 1997, vol. 1997, pp. 131–137.

    Article  Google Scholar 

  6. Beachy, C.K., Ryan, T.J., and Bonett, R.M., How metamorphosis is different in plethodontids: Larval life history perspectives on life-cycle evolution, Herpetologica, 2017, vol. 73, pp. 252–258. https://doi.org/10.1655/herpetologica-d-16-00083.1

    Article  Google Scholar 

  7. Beaumont, E., Cranial morphology of the Loxommatidae (Amphibia, Labyrinthodontia), Phil. Trans. Soc. B, 1977, vol. 208, pp. 29–101.

    Google Scholar 

  8. Benard, M.F., Predator-induced phenotypic plasticity in organisms with complex life cycles, Annu. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 651–673.

    Article  Google Scholar 

  9. Beshera, K.A. and Harris, P.M., Mitochondrial DNA phylogeography of the Labeobarbus intermedius complex (Pisces, Cyprinidae) from Ethiopia, J. Fish. Biol., 2014, vol. 85, pp. 228–245, https://doi.org/10.1111/jfb.12408

    Article  Google Scholar 

  10. Bolt, J.R., The osteology and relationships of Doleserpeton annectens, a new rhachitomous amphibian from the Lower Permian of Oklahoma, PhD Thesis, Univ. of Chicago, 1968.

  11. Bolt, J.R., Dissorophoid relationships and ontogeny, and the origin of the Lissamphibia, J. Paleontol., 1977, vol. 51, pp. 235–249.

  12. Bolt, J.R., Amphibamus grandiceps as a juvenile dissorophoid: Evidence and implications, in Mazon Creek Fossils, Nitecki, M.H., Ed., New York: Acad. Press, 1979, pp. 529–563.

  13. Bonett, R.M., Mueller, R.L., and Wake, D.B., Why should reacquisition of larval stages by desmognathine salamanders surprise us? Herpetol. Rev., 2005, vol. 36, pp. 112–113.

    Google Scholar 

  14. Bonett, R.M., Steffen, M.A., Lambert, S.M., Wiens, J.J., and Chippindale, P.T., Evolution of paedomorphosis in plethodontid salamanders: ecological correlates and re-evolution of metamorphosis, Evolution, 2014, vol. 68, pp. 466–482. https://doi.org/10.1111/evo.12274

    Article  Google Scholar 

  15. Boy, J.A., Die Branchiosaurier (Amphibia) des saarpfälzischen Rotliegenden (Perm, SWDeutschland), Abh. Hess. Landesamtes Bodenforsch., 1972, bd. 65, s. 1–137.

    Google Scholar 

  16. Boy, J.A., Studien über die Branchiosauridae (Amphibia: Temnospondyli; Ober-Karbon – Unter-Perm). 2. Systematische Übersicht, N. Jb. Geol. Paleontol. Abh., 1987, vol. 174, pp. 75–104.

    Google Scholar 

  17. Boy, J.A. and Sues, H.D., Branchiosaurs: larvae, metamorphosis and heterochrony in temnospondyls and seymouriamorphs, in Amphibian Biology, Vol. 4: Palaeontology, Heatwole, H. and Carroll, R.L., Eds., Australia: Surrey Beatty, 2000, pp. 1150–1197.

  18. Bystrov, A.P. and Efremov, I.A., Benthosuchus sushkini Efr.—Labyrinthodont from the Eotriassic of the Sharzhenga River, in Tr. Paleontol. Inst. Akad. Nauk SSSR (Trans. Paleontol. Inst. USSR Acad. Sci.), 1940, vol. 10, no. 1, pp. 1–152.

    Google Scholar 

  19. Broili, F., Unpaare Elemente im Schädel von Tetrapoden, Anat. Anz., 1917, vol. 49, pp. 561–576.

    Google Scholar 

  20. Broom, R., Studies of the Permian temnospondylous stegocephalians of the North America, Bull. Am. Mus. Natl. Hist., 1915, vol. 32, pp. 563–595.

    Google Scholar 

  21. Buckley, D., Alcobendas, M., García-París, M., and Wake, M.H., Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra, Evol. Dev., 2007, vol. 9, pp. 105–115. https://doi.org/10.1111/j.1525-142X.2006.00141.x

    Article  Google Scholar 

  22. Callery, E.M. and Elinson, R.P., Thyroid hormone-dependent metamorphosis in a direct developing frog, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 2615–2620. https://doi.org/10.1073/pnas.050501097

    Article  Google Scholar 

  23. Callery, E.M., Fang, H., and Elinson, R.P., Frogs without polliwogs: Evolution of anuran direct development, Bioessays, 2001, vol. 23, pp. 233–241.

    Article  Google Scholar 

  24. Carroll, R.L., A tiny microsaur from the lower Permian of Texas: Size constraints in Paleozoic tetrapods, Palaeontology, 1990, vol. 33, pp. 893–909.

    Google Scholar 

  25. Carroll, R.L., Early evolution of the dissorophoid amphibians, Harv. Univ., Mus. Comp. Zool., Bull., 1964, vol. 131, pp. 161–250.

    Google Scholar 

  26. Carroll, R.L., Lepospondyls, in Amphibian Biology, Vol. 4: Palaeontology, Heatwole, H. and Carroll, R.L., Eds., Australia: Surrey Beatty, 2000, pp. 1198–1269.

  27. Carroll, R.L., The primary radiation of terrestrial vertebrates, Ann. Rev. Earth Planet Sci., 1992, vol. 20, pp. 45–84.

    Article  Google Scholar 

  28. Chinathamby, K., Reina, R.D., Bailey, P.C.E., et al., Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog, Litoria ewingii, Aust. J. Zool., 2006, vol. 54, pp. 97–105.

    Article  Google Scholar 

  29. Chippindale, P.T., Bonett, R.M., Baldwin, A.S., and Wiens, J.J., Phylogenetic evidence for a major reversal of life history evolution in plethodontid salamanders, Evolution, 2004, vol. 58, pp. 2809–2822. https://doi.org/10.1111/j.0014-3820. 2004.tb01632.x

  30. Chugunova, T.Yu., Interfrontalia in Bombina orientalis (Blgr.) and Bombina bombina (L.), in Gerpetologicheskie issledovaniya v Sibiri i na Dal’nem Vostoke (Gerpetological Research in Siberia and the Far East), Borkin, L.Ya., Ed., Leningrad: Zool. Instit. Akad. Nauk SSSR, 1981, pp. 117–121.

  31. Clack, J.A. and Milner, A.R., Platyrhinops from the Upper Carboniferous of Linton and Nyrany and the family Amphibamidae (Amphibia: Temnospondyli), in New Research on Permo-Carboniferous Faunas, Heidtke, U., Ed., Bad Durkheim (Germany): Pollichia, 1993, pp. 185–191.

    Google Scholar 

  32. Clarke, B.T., Small size in amphibians: its ecological and evolutionary implications, Symp. Zool. Soc. London, 1996, vol. 69, pp. 201–224.

    Google Scholar 

  33. Clemen, G. and Greven, H., Morphological studies on the mouth cavity of Urodela IX. Teeth of the palate and the splenials in Siren and Pseudobranchus (Sirenidae: Amphibia), J. Zool. Syst. Evol. Res., 1988, vol. 26, pp. 135–143. https://doi.org/10.1111/j.1439-0469.1988.tb00305.x

    Article  Google Scholar 

  34. Daly, E., The Amphibamidae (Amphibia: Temnospondyli), with a description of a new genus from the Upper Pennsylvanian of Kansas, Univ. Kansas Misc. Publ., 1994, vol. 85, pp. 1–59.

    Google Scholar 

  35. Davies, M., Ontogeny of bone and the role of heterochrony in the myobatrachine genera Uperoleia, Crinia, and Pseudophryne (Anura: Leptodactylidae: Myobatrachinae), J. Morphol., 1989, vol. 206. pp. 269–300.

    Article  Google Scholar 

  36. de Graaf, M., Megens, H.-J., Samallo, J., and Sibbing, F., Preliminary insight into the age and origin of the Labeobarbus fish species flock from Lake Tana (Ethiopia) using the mtDNA cytochrome b gene, Mol. Phylogenet. Evol., 2010, vol. 54, pp. 336–343.

    Article  Google Scholar 

  37. de Sa, R.O., Chondrocranium and ossification sequence of Hyla lanciformis, J. Morphol., 1988, vol. 195, pp. 345–355.

    Article  Google Scholar 

  38. Denoël, M. and Joly, P., Neoteny and progenesis as two heterochronic processes involved in paedomorphosis in Triturus alpestris (Amphibia, Caudata), Proc. R. Soc. London, Ser. B, 2000, vol. 267, pp. 1481–1485.

    Article  Google Scholar 

  39. Denver, R.J., Environmental stress as a developmental cue: Corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis, Horm. Behav., 1997a, vol. 31, pp. 169–179. https://doi.org/10.1006/hbeh.1997.1383

    Article  Google Scholar 

  40. Denver, R.J., Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis, Am. Zool., 1997b, vol. 37, pp. 172–184. https://doi.org/10.1093/icb/37.2.172

    Article  Google Scholar 

  41. Denver, R.J., Neuroendocrinology of amphibian metamorphosis. Linking thyroid hormone to life history and life cycle evolution, Curr. Top. Dev. Biol., 2013, vol. 103, pp. 195–227.

    Article  Google Scholar 

  42. Duellman, W.E. and Trueb, L., Biology of Amphibians, New York, NY: McGraw-Hill, 1986.

    Google Scholar 

  43. Dulcey Cala, C.J., Tarazona, O.A. and Ramírez-Pinilla, M.P., The morphology and post-hatching development of the skull of Bolitoglossa nicefori (Caudata: Plethodontidae): developmental implications of recapitulation and repatterning, Zoology (Jena), 2009, vol. 112, pp. 227–239. https://doi.org/10.1016/j.zool.2008.09.006

    Article  Google Scholar 

  44. Eagleson, G.W., A comparison of the life histories and growth patterns of populations of the salamander Ambystoma gracile (Baird) from permanent low-altitude and montane lakes, Can. J. Zool., 1976, vol. 54, pp. 2098–2111. https://doi.org/10.1139/z76-243

    Article  Google Scholar 

  45. Ehmcke, J. and Clemen, G., The structure and development of the skull of Costa Rican plethodontid salamanders (Amphibia: Urodela), Ann. Anat., 2000, vol. 182, pp. 537–547.

    Article  Google Scholar 

  46. Enriquez-Urzelai, U., San Sebastián, O., Garriga, N., and Llorente, G.A., Food availability determines the response to pond desiccation in anuran tadpoles, Oecologia, 2013, vol. 173, pp. 1–11.

    Article  Google Scholar 

  47. Erdman, S. and Cundall, D., The feeding apparatus of the salamander Amphiuma tridactylum: Morphology and behavior, J. Morphol., 1984, vol. 181, pp. 175–204. https://doi.org/10.1002/jmor.1051810206

    Article  Google Scholar 

  48. Esin, E.V., Bocharova, E.S., Borisova, E.A., and Markevich, G.N., Interaction among morphological, trophic and genetic groups in the rapidly radiating Salvelinus fshes from Lake Kronotskoe, Evol. Ecol., 2020, vol. 34, pp. 611–632. https://doi.org/10.1007/s10682-020-10048-y

    Article  Google Scholar 

  49. Fontenot, C.L., Jr., Reproductive biology of the aquatic salamander Amphiuma tridactylum in Louisiana, J. Herpetol., 1999, vol. 33, pp. 100–105. https://doi.org/10.2307/1565548

    Article  Google Scholar 

  50. Fort, D.J., Degitz, S., Tietge, J., et al., The hypothalamic -pituitary-thyroid (HPT) axis in frogs and its role in frog development and reproduction, Crit. Rev. Toxicol., 2007, vol. 37, pp. 117–161.

    Article  Google Scholar 

  51. Fröbisch, N.B. and Reisz, R.R., A new Lower Permian amphibamid (Dissorophoidea, Temnospondyli) from the fissure fill deposits near Richards Spur, Oklahoma, J. Vertebr. Paleontol., 2008, vol. 28, pp. 1015–1030. https://doi.org/10.1671/0272-4634-28.4.1015

    Article  Google Scholar 

  52. Fröbisch, N.B. and Schoch, R.R., Testing the impact of miniaturization on phylogeny: Paleozoic dissorophoid amphibians, Syst. Biol., 2009, vol. 58, pp. 312–327.

    Article  Google Scholar 

  53. Galton, V.A., The role of thyroid hormone in amphibian metamorphosis, Trends Endocrinol. Metab., 1992, vol. 3, pp. 96–100. https://doi.org/10.1016/1043-2760(92)90020-2

    Article  Google Scholar 

  54. Gomez-Mestre, I., Kulkarni, S., and Buchholz, D.R., Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying, PLoS One, 2013, vol. 8, no. 12, e84266. https://doi.org/10.1371/journal.pone.0084266

    Article  Google Scholar 

  55. Gomez-Mestre, I., Pyron, R.A., and Wiens, J.J., Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs, Evolution, 2012, vol. 66, pp. 3687–3700. https://doi.org/10.1111/j.1558-5646.2012.01715.x

    Article  Google Scholar 

  56. Gould, S.J., Ontogeny and Phylogeny, Cambridge: Harvard Univ. Press, 1977.

    Google Scholar 

  57. Greven, H., Larviparity and pueriparity, in Reproductive Biology and Phylogeny, Vol. 1: Reproductive Biology and Phylogeny of Urodela, Sever, D.M., Ed., Enfield: Sci. Publ. Inc., 2003, pp. 447–475.

  58. Greven, H., Teeth of extant amphibia: Morphology and some implications, Fortschr. Zool., 1989, vol. 35, pp. 451–455.

    Google Scholar 

  59. Greven, H. and Clemen, G., Morphological studies on the mouth cavity of urodeles, Amphibia-Reptilia, 1980, vol. 1, pp. 49–59. https://doi.org/10.1163/156853880X00060

    Article  Google Scholar 

  60. Griffiths, I., On the nature of the fronto-parietal in Amphibia, Salientia, Proc. Zool. Soc. London, 1954, vol. 123, pp. 781–792. https://doi.org/10.1111/j.1096-3642.1954.tb00204.x

    Article  Google Scholar 

  61. Grimaldi, A., Buisine, N., Miller, T., et al., Mechanisms of thyroid hormone receptor action during development: Lessons from amphibian studies, Biochim. Biophys. Acta, 2013, vol. 1830, pp. 3882–3892.

    Article  Google Scholar 

  62. Gubin, Y.M., Novikov, I.V., and Morales, M., A review of anomalies in the structure of the skull roof of temnospondylous labyrinthodonts, Paleontol. J., 2000, vol. 34 (Suppl.), pp. S154–S164.

    Google Scholar 

  63. Gunzburger, M.S., Evaluation of the hatching trigger and larval ecology of the salamander Amphiuma means, Herpetologica, 2003, vol. 59, pp. 459–468.

    Article  Google Scholar 

  64. Hall, J.A. and Larsen, J.H., Postembryonic ontogeny of the spadefoot toad Scaphiopus intermontanus (Anura: Pelobatidae): Skeletal morphology, J. Morphol., 1998, vol. 238, pp. 179–244.

    Article  Google Scholar 

  65. Hanken, J., Life history and morphological evolution, J. Evol. Biol., 1992, vol. 5, pp. 549–557.

    Article  Google Scholar 

  66. Hanken, J., Miniaturization and its effects on cranial morphology in plethodontid salamanders, genus Thorius (Amphibia: Plethodontidae). I. Osteological variation, Biol. J. Linn. Soc. London, 1984, vol. 23, pp. 55–75.

    Article  Google Scholar 

  67. Hanken, J., Klymkowsky, M.W., Summers, C.H., Seufert, D.W., and Ingebrigtsen, N., Cranial ontogeny in the direct-developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), analyzed using wholemount immunohistochemistry, J. Morphol., 1992, vol. 21, pp. 95–118. https://doi.org/10.1002/jmor.1052110111

    Article  Google Scholar 

  68. Hanken, J. and Wake, D.B., Miniaturization of body size: Optimal consequences and evolutionary significance, Ann. Rev. Ecol. Syst., 1993, vol. 23, pp. 501–519.

    Article  Google Scholar 

  69. Harkey, G.A. and Semlitsch, R.D., Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata, Copeia, 1988, vol. 1988, no. 4, pp. 1001–1007. https://doi.org/10.2307/1445724

    Article  Google Scholar 

  70. Harrington, S.M., Harrison, L.B., and Sheil, C.A., Ossification sequence heterochrony among amphibians, Evol. Dev., 2013, vol. 15, pp. 344–364. https://doi.org/10.1111/ede.12043

    Article  Google Scholar 

  71. Howe, K., Clark, M., Torroja, C., et al., The zebrafish reference genome sequence and its relationship to the human genome, Nature, 2013, vol. 496, pp. 498–503. https://doi.org/10.1038/nature12111

    Article  Google Scholar 

  72. Huttenlocker, A.K., Pardo, J.D., and Small, B.J., Plemmyradytes shintoni, gen. et sp. nov., an Early Permian amphibamid (Temnospondyli: Dissorophoidea) from the Eskridge Formation, Nebraska, J. Vertebr. Paleontol., 2007, vol. 27, pp. 316–328.

    Article  Google Scholar 

  73. Iwasawa, H. and Kera, Y., Normal stages of development of Japanese lungless salamander, Onychodactylus japonicus (Houttuyn), Jap. J. Herpetol., 1980, vol. 8, pp. 73–89.

    Article  Google Scholar 

  74. Jennings, D.H. and Hanken, J., Mechanistic basis of life history evolution in anuran amphibians: thyroid gland development in the direct-developing frog, Eleutherodactylus coqui, Gen. Comp. Endocrinol., 1998, vol. 111, pp. 225–232. https://doi.org/10.1006/gcen.1998.7111

    Article  Google Scholar 

  75. Kakegawa, M., Iizuka, K., and Kuzumi, S., Morphology of egg sacs and larvae just after hatching in Hynobius sonani and H. formosanus from Taiwan, with an analysis of skeletal muscle protein compositions, in Current Herpetology in East Asia, Kyoto: Herpetol. Soc. of Japan, 1989, pp. 147–155.

    Google Scholar 

  76. Karraker, N.E., Southern torrent salamander (Rhyacotriton variegatus) nest site, Herpetol. Rev., 1999, vol. 30, pp. 160–161.

    Google Scholar 

  77. Kearney, B.D., Pell, R.J., Byrne, P.G., and Reina, R.D., Anuran larval developmental plasticity and survival in response to variable salinity of ecologically relevant timing and magnitude, J. Exp. Zool., Pt. A, 2014, vol. 321, pp. 541–549.

    Google Scholar 

  78. Kemp, N.E. and Hoyt, J.A., Sequence of ossification in the skeleton of growing and metamorphosing tadpoles of Rana pipiens, J. Morphol., 1969, vol. 129, pp. 415–444.

    Article  Google Scholar 

  79. Kerney, R., Embryonic staging table for a direct-developing salamander, Plethodon cinereus (Plethodontidae), Anat Rec., 2011, vol. 294, pp. 1796–1808. https://doi.org/10.1002/ar.21480

    Article  Google Scholar 

  80. Kerney, R., Gross, J., and Hanken, J., Early cranial patterning in the direct-developing frog Eleutherodactylus coqui revealed through gene expression, Evol. Dev., 2010, vol. 12, pp. 373–382.

    Article  Google Scholar 

  81. Kerney, R., Meegaskumbura, M., Manamendra-Arachchi, K., and Hanken, J., Cranial ontogeny in Philautus silus (Anura: Ranidae: Rhacophorinae) reveals few similarities with other directdeveloping anurans, J. Morphol., 2007, vol. 268, pp. 715–725.

    Article  Google Scholar 

  82. Khoshnamvand, H., Malekian, M., Keivany, Y., Zamani-Faradonbe, M., and Amiri, M., Descriptive osteology of an imperiled amphibian, the Luristan newt (Neurergus kaiseri, Amphibia: Salamandridae), Acta Herpetol., 2019, vol. 14, pp. 51–56.

    Google Scholar 

  83. Klembara, J., The subdivisions and fusions of the exoskeletal skull bones of Discosauriscus austriacus (Makowsky 1876) and their possible homologues in rhipidistians, J. Paleontol., 1993, vol. 67, pp. 145–168.

    Google Scholar 

  84. Klingenberg, C.P., Heterochrony and allometry: The analysis of evolutionary change in ontogeny, Biol. Rev., 1998, vol. 73, pp. 79–123.

    Article  Google Scholar 

  85. Kupferberg, S.J., The role of larval diet in anuran metamorphosis, Am. Zool., 1997, vol. 37, pp. 146–159. https://doi.org/10.1093/icb/37.2.146

    Article  Google Scholar 

  86. Larsen, J.H., The cranial osteology of neotenic and transformed salamanders and its bearing on interfamilial relationships, PhD Thesis, Seattle, WA: Univ. of Washington, 1963.

  87. Laudet, V., The origins and evolution of vertebrate metamorphosis, Curr. Biol., 2011, vol. 21, pp. 726–737.

    Article  Google Scholar 

  88. Lebedkina, N.S., Evolyutsiya cherepa amfibiy (The Evolution of the Amphibian Skull), Moscow: Nauka, 1979.

  89. Lebedkina, N.S., Evolution of Amphibian Skull, Smirnov, S.V., Ed., Sofia: Pensoft Publ., 2004.

    Google Scholar 

  90. Lebedkina, N.S., The homologies of temporal bones in Amphibia and Reptilia, in Studies in Herpetology, Roček, Z., Ed., Prague: Charles Univ., 1986, pp. 303–306.

    Google Scholar 

  91. Loman, J., Early metamorphosis in common frog Rana temporaria tadpoles at risk of drying: An experimental demonstration, Amphibia-Reptilia, 1999, vol. 20, pp. 421–430. https://doi.org/10.1163/156853899X00466

    Article  Google Scholar 

  92. Love, A.C., Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology, Biol. Philos., 2003, vol. 18, pp. 309–345. https://doi.org/10.1023/A:1023940220348

    Article  Google Scholar 

  93. Marks, S.B., Skull development in two plethodontid salamanders (genus Desmognathus) with different life histories, in The Biology of Plethodontid Salamanders, Bruce, R.C., Jaeger, R.G., and Houck, L.D., Eds., New York: Academic, 2000, pp. 261–276.

    Google Scholar 

  94. Marks, S.B. and Collazo, A., Direct Development in Desmognathus aeneus (Caudata: Plethodontidae): A staging table, Copeia, 1998, vol. 1998, no. 3, pp. 637–648. https://doi.org/10.2307/1447793

    Article  Google Scholar 

  95. Matsuda, R., Animal Evolution in Changing Environments, with Special Reference to Abnormal Metamorphosis, New York: Wiley, 1987.

    Google Scholar 

  96. Milner, A.R., The Paleozoic relatives of lissamphibians, Herpetol. Monogr., 1993, vol. 8, pp. 8–27.

    Article  Google Scholar 

  97. Milner, A.R., The relationships and origin of living amphibians, in The Phylogeny and Classification of the Tetrapods, Benton, M.J., Ed., Oxford: Clarendon Press, 1988, pp. 59–102.

    Google Scholar 

  98. Newman, R.A., Effects of changing density and food level on metamorphosis of a desert amphibian, Scaphiopus couchii, Ecology, 1994, vol. 75, pp. 1085–1096. https://doi.org/10.2307/1939432

    Article  Google Scholar 

  99. Noble, G.K., The Biology of the Amphibia, New York: McGraw-Hill, 1931.

    Book  Google Scholar 

  100. Nunes-de-Almeida, C.H.L., Haddad, C.F.B., and Toledo, L.F., A revised classification of the amphibian reproductive modes, Salamandra, 2021, vol. 57, pp. 413–427.

    Google Scholar 

  101. Nuño de la Rosa, L. and Müller, G.B., Evolutionary Developmental Biology, Switzerland AG: Springer, 2021. https://doi.org/10.1007/978-3-319-32979-6_194

  102. Nussbaum, R.A., The evolution of parental care in salamanders, Misc. Publ. Mus. Zool., Univ. Mich., 1985, vol. 169, pp. 1–50.

    Google Scholar 

  103. Okamiya, H., Sugime, R., Furusawa, C., et al., Paedomorphosis in the Ezo salamander (Hynobius retardatus) rediscovered after almost 90 years, Zool. Lett., 2021, vol. 7, p. 14. https://doi.org/10.1186/s40851-021-00183-x

    Article  Google Scholar 

  104. Olori, J.C., Skeletal morphogenesis of Microbrachis and Hyloplesion (Tetrapoda: Lepospondyli), and implications for the developmental patterns of extinct, early tetrapods, PLoS One, 2015, vol. 10, no. 6. Article e0128333. https://doi.org/10.1371/journal.pone.0128333

    Article  Google Scholar 

  105. Paluh, D.J., Dillard, W.A., Stanley, E.L., Fraser, G.J., and Blackburn, D.C., Re-evaluating the morphological evidence for the re-evolution of lost mandibular teeth in frogs, Evolution, 2021, vol. 75, pp. 3203–3213. https://doi.org/10.1111/evo.14379

    Article  Google Scholar 

  106. Paluh, D.J., Stanley, E.L., and Blackburn, D.C., Evolution of hyperossification expands skull diversity in frogs, PNAS, 2020, vol. 117, pp. 8554–8562.

    Article  Google Scholar 

  107. Reilly, S.M., Ontogeny of cranial ossification in the eastern newt, Notophthalmus viridescens (Caudata: Salamandridae), and its relationship to metamorphosis and neoteny, J. Morphol., 1986, vol. 188, pp. 315–326. https://doi.org/10.1002/jmor.1051880306

    Article  Google Scholar 

  108. Reilly, S.M. and Altig, R., Cranial ontogeny in Siren intermedia (Caudata: Sirenidae): paedomorphic, metamorphic, and novel patterns of heterochrony, Copeia, 1996, vol. 1996, pp. 29–41. https://doi.org/10.2307/1446939

    Article  Google Scholar 

  109. Reilly, S.M., Wiley, E.O., and Meinhardt, D.J., An integrative approach to heterochrony: The distinction between interspecific and intraspecific phenomena, Biol. J. Linn. Soc., 1997, vol. 60, pp. 119–143.

    Article  Google Scholar 

  110. Reinbach, W., Über das Os supratemporale von Pelobates fuscus, Morphol. J., 1939, vol. 84, pp. 169–186.

    Google Scholar 

  111. Reiss, J., Palatal metamorphosis in basal caecilians (Amphibia: Gymnophiona) as evidence for lissamphibian monophyly, J. Herpetol., 1996, vol. 30, pp. 27–39.

    Article  Google Scholar 

  112. Roček, Z., Cranial anatomy of frogs of the family Pelobatidae Stannius, 1856, with outlines of their phylogeny and systematics, Acta Univ. Carol. Biol., 1981, vol. 1980, pp. 1–164.

    Google Scholar 

  113. Roček, Z., Origin and evolution of the frontoparietal complex in anurans, Amphibia–Reptilia, 1988, vol. 9, pp. 385–403.

    Article  Google Scholar 

  114. Rose, C.S., Skeletal morphogenesis in the urodele skull: III. Effect of hormone dosage in TH-induced remodeling, J. Morphol., 1995, vol. 223, pp. 243–261. https://doi.org/10.1002/jmor.1052230303

    Article  Google Scholar 

  115. Rose, C.S., The developmental morphology of salamander skulls, in Amphibian Biology Osteology, Vol. 5, Heatwole, H., Ed., Chipping Norton: Surrey Beatty, 2003, pp. 1684–1781.

  116. Rot-Nikcevic, I., Denver, R.J., and Wassersug, R.J., The influence of visual and tactile stimulation on growth and metamorphosis in anuran larvae, Funct. Ecol., 2005, vol. 19, pp. 1008–1016. http://www.jstor.org/stable/3599056.

    Article  Google Scholar 

  117. Ruta, M. and Coates, M.I., Dates, nodes and character conflict: Addressing the Lissamphibian origin problem, J. Syst. Paleontol., 2007, vol. 5, pp. 69–122. https://doi.org/10.1017/S1477201906002008

    Article  Google Scholar 

  118. Säve-Söderbergh, G., On the dermal bones of the head in labyrinthodont stegocephalians and primitive Reptilia with special reference to Eotriassic stegacephalians from East Greenland, Meddel. Grønland, 1935, vol. 98, pp. 1–211.

    Google Scholar 

  119. Schmidt, K. and Starck, J.M., Developmental plasticity, modularity, and heterochrony during the phylotypic stage of the zebra fish, Danio rerio, J. Exp. Zool., Part B, 2010, vol. 314, pp. 166–178. https://doi.org/10.1002/jez.b.21320

    Article  Google Scholar 

  120. Schoch, R.R., Can metamorphosis be recognised in Paleozoic amphibians? Neues Jahrb. Geol. Palaeontol., Abh., 2001, vol. 220, pp. 335–367.

    Article  Google Scholar 

  121. Schoch, R.R., Evolution of life cycles in early amphibians, Annu. Rev. Earth Planet. Sci., 2009, vol. 37, pp. 135–162.

    Article  Google Scholar 

  122. Schoch, R.R., The evolution of metamorphosis in temnospondyls, Lethaia, 2002, vol. 35, pp. 309–327.

    Article  Google Scholar 

  123. Schoch, R.R. and Carroll, R.L., Ontogenetic evidence for the Paleozoic ancestry of salamanders, Evol. Dev., 2003, vol. 5, pp. 314–324. https://doi.org/10.1046/j.1525-142X.2003.03038.x

    Article  Google Scholar 

  124. Schoch, R.R. and Fröbisch, N.B., Metamorphosis and neoteny: Alternative pathways in an extinct amphibian clade, Evolution, 2006, vol. 60, pp. 1467–1475.

    Google Scholar 

  125. Schoch, R.R. and Milner, A.R., The intrarelationships and evolutionary history of the temnospondyl family Branchiosauridae, J. Syst. Palaeontol., 2008, vol. 6, pp. 409–431.

    Article  Google Scholar 

  126. Schoch, R.R. and Rubidge, B.S., The amphibamid micropholis from the Lystrosaurus assemblage zone of South Africa, J. Vertebr. Paleontol., 2005, vol. 25, pp. 502–522.

    Article  Google Scholar 

  127. Sequeira, F., Ferrand, N., and Crespo, E.G., Reproductive cycle of the golden-striped salamander Chioglossa lusitanica (Caudata, Salamandridae) in NW Portugal, Amphibia-Reptilia, 2003, vol. 24, pp. 1–12.

    Article  Google Scholar 

  128. Sewertzov, A.N., Über einige Eigenthümlichkeiten in der Entwicklung und im Bau des Schädels von Pelobates fuscus, Bull. Soc. Imp. Nat. Moscou, 1891, vol. 1891, no. 5, pp. 143–160.

    Google Scholar 

  129. Seymour, R.S., Roberts, J.D., Mitchell, N.J., and Blaylock, A.J., Influence of environmental oxygen on development and hatching of aquatic eggs of the Australian frog, Crinia georgiana, Physiol. Biochem. Zool., 2000, vol. 73, pp. 501–507.

    Article  Google Scholar 

  130. Shishkin, M.A., Irreversibility of evolution and factors of morphogenesis, Paleontol. Zh., 1968, no. 3, pp. 3–11.

  131. Shishkin, M.A., The origin of Anura and the theory of “lissamphibians”, in Materialy po evolyutsii nazemnykh pozvonochnykh (Materials on the Evolution of Terrestrial Vertebrates), Flerov, K.K., Moscow: Nauka, 1970, pp. 30–44.

  132. Shishkin, M.A., Morphology of ancient amphibians and problems of evolution of lower tetrapods, in Tr. Paleontol. Inst. Akad. Nauk SSSR (Trans. Paleontol. Inst. USSR Acad. Sci.), 1973, vol. 137, pp. 1–260.

    Google Scholar 

  133. Shishkin, M.A., Regularities in phenotypic variation as a property of the developmental system: Evidence from the evolution of early amphibians, Amphib. Reptiles Anomalies Pathol., 2018, vol. 2018, pp. 145–149.

    Google Scholar 

  134. Shkil, F.N. and Smirnov, S.V., Experimental approach to the hypotheses of heterochronic evolution in lower vertebrates, Paleontol. J., 2015, vol. 49, pp. 1624–1634.

    Article  Google Scholar 

  135. Smirnov, S.V., Postmetamorphic skull development in Bombina orientalis (Amphibia Discoglossidae), with comments on neoteny, Zool. Anz., 1989, vol. 223, pp. 91–99.

    Google Scholar 

  136. Smirnov, S.V., Paedomorphosis as a mechanism of evolutionary transformations of organisms, in Sovremennaya evolyutsionnaya morfologiya (Modern Evolutionary Morphology), Vorobyeva, E.I. and Vronsky, A.A., Eds., Kyiv: Naukova Dumka, 1991, pp. 88–103.

  137. Smirnov, S.V., Postmaturation skull development in Xenopus laevis (Anura, Pipidae): Late-appearing bones and their bearing on the pipid ancestral morphology, Russ. J. Herpetol., 1994, vol. 1, pp. 21–29.

    Google Scholar 

  138. Smirnov, S.V., Extra bones in the Pelobates skull as evidence of the paedomorphic origin of the anurans, Zh. Obsch. Biol., 1995, vol. 56, pp. 317–328.

    Google Scholar 

  139. Smirnov, S.V., Additional dermal ossifications in the anuran skull: morphological novelties or archaic elements? Russ. J. Herpetol., 1997, vol. 4, pp. 17–27.

    Article  Google Scholar 

  140. Smirnov, S.V., Metamorphosis of tailed amphibians: features, mechanisms of regulation and evolution, Zh. Obsch. Biol., 2006, vol. 67, pp. 323–334.

    Google Scholar 

  141. Smirnov, S.V., Direct development in tailed amphibians, its formation and evolution, Zhurn. Obsch. Biol., 2008, vol. 69, pp. 163–174.

    Google Scholar 

  142. Smirnov, S.V. and Vasil’eva, A.B., Anuran dentition: Development and evolution, Russ. J. Herpetol., 1995, vol. 2, pp. 120–128.

    Google Scholar 

  143. Smirnov, S.V. and Vassilieva, A.B., Skeletal and dental ontogeny in the long-tailed clawed salamander, Onychodactylus fischeri (Urodela: Hynobiidae), Russ. J. Herpetol., 2002, vol. 9, pp. 21–32.

    Google Scholar 

  144. Smirnov, S.V. and Vassilieva, A.B., Skeletal and dental ontogeny in the smooth newt, Triturus vulgaris (Urodela: Salamandridae): role of thyroid hormone in its regulation, Russ. J. Herpetol., 2003, vol. 10, pp. 93–110.

    Google Scholar 

  145. Smirnov, S.V. and Vassilieva, A.B., Skull development in normal, TH-exposed, and goitrogen-treated axolotls, Ambystoma mexicanum, Russ J. Herpetol., 2005, vol. 12, pp. 145–158.

    Google Scholar 

  146. Smirnov, S.V. and Vassilieva, A.B., Number of ossification centers in the anuran cranial bones depends upon the rate of development: Experimental evidence, Russ. J. Herpetol., 2009, vol. 16, pp. 167–176.

    Google Scholar 

  147. Smirnov, S.V. and Vassilieva, A.B., Thyroid hormones in the skeletogenesis and accessory sources of endogenous hormones in Xenopus laevis (Amphibia; Anura) ontogeny: Experimental evidence, Dokl. Biol. Sci., 2014, vol. 455, pp. 136–138. https://doi.org/10.1134/s0012496614020185

    Article  Google Scholar 

  148. Smirnov, S.V., Vassilieva, A.B., and Merkulova, K.M., Role of heterochronies in the morphogenesis of amphibian skull bones: an experimental study, Dokl. Biol. Sci., 2008, vol. 418, pp. 64–66.

    Article  Google Scholar 

  149. Smirnov, S.V., Vassilieva, A.B., and Merkulova, K.M., The nasal bone of the Iberian ribbed newt (Pleurodeles waltl; Salamandridae, Urodela): development and regulatory mechanism of its ontogeny, Dokl. Biol. Sci., 2010, vol. 431, pp. 113–116. https://doi.org/10.1134/s0012496610020122

    Article  Google Scholar 

  150. Smirnov, S.V., Vassilieva, A.B., and Merkulova, K.M., Thyroid hormone mediation in skull development of Siberian newt, Salamandrella keyserlingi (Urodela: Hynobiidae), with comparison to other species, Russ. J. Herpetol., 2011, vol. 18, pp. 203–209.

    Google Scholar 

  151. Smirnov, S.V., Merkulova, K.M., and Vassilieva, A.B., Skull development in the Iberian newt, Pleurodeles waltl (Salamandridae: Caudata: Amphibia): timing, sequence, variations, and thyroid hormone mediation of bone appearance, J. Anat., 2020, vol. 237, pp. 543–555.

  152. Sultan, S.E., Genotype-environment interation and the unscripted reaction norm, in Evolutionary Causation: Biological and Philosophical Reflections, Uller, T. and Laland, K.N., Eds., London: MIT Press, 2019, pp. 109–126.

  153. Tarkhnishvili, D.N. and Serbinova, I.A., Normal development of the Caucasian salamander (Mertensiella caucasica), Adv. Amph. Res. Former Sov. Union, 1997, vol. 2, pp. 13–30.

    Google Scholar 

  154. Tata, J.R., Amphibian metamorphosis as a model for studying the developmental actions of thyroid hormone, Biochimie, 1999, vol. 81, pp. 359–366.

    Article  Google Scholar 

  155. Tatarinov, L.P., Some problems of phylogenetic studies on lower tetrapods, in Materialy po evolyutsii nazemnykh pozvonochnykh (Materials on the Evolution of Terrestrial Vertebrates), Moscow, 1970, pp. 8–29.

    Google Scholar 

  156. Tejedo, M. and Reques, R., Plasticity in metamorphic traits of Natterjack tadpoles: The interactive effects of density and pond duration, Oikos, 1994, vol. 71, pp. 295–304. https://doi.org/10.2307/3546278

    Article  Google Scholar 

  157. Trueb, L., Evolutionary relationships of casque-headed tree frogs with co-ossified skulls (family Hylidae), Univ. Kansas Publ. Mus. Nat. Hist., 1970, vol. 18, pp. 547–716.

    Google Scholar 

  158. Trueb, L. and Alberch, P., Miniaturization and the anuran skull: A case study of heterochrony, Vertebr. Morphol., 1985, vol. 30, pp. 113–121.

    Google Scholar 

  159. Trueb, L. and Cloutier, R., A phylogenetic investigation of the inter- and intrarelationships of the Lissamphibia (Amphibia: Temnospondyli), in Origins of the Higher Groups of Tetrapods—Controversy and Consensus, Schultze, H.-P. and Trueb, L., Eds., Ithaca, New York: Comstock Publ. Associates, 1991, pp. 223–313.

  160. Vassilieva, A.B., Heterochronies in the cranial development of Asian tree frogs (Amphibia: Anura: Rhacophoridae) with different life histories, Dokl. Biol. Sci., 2017, vol. 473, pp. 50–52. https://doi.org/10.1134/s001249661702003x

    Article  Google Scholar 

  161. Vassilieva, A.B. and Smirnov, S.V., The role of thyroid hormones in the bony skull development in the common frog (Rana temporaria, Ranidae), Dokl. Biol. Sci., 2007, vol. 413, pp. 11–114.

  162. Vassilieva, A.B. and Serbinova, I.A., Bony skeleton in the Caucasian salamander, Mertensiella caucasica (Urodela: Salamandridae): Ontogeny and embryonization effect, Russ. J. Herpetol., 2013, vol. 20, pp. 85–96.

  163. Vassilieva, A.B. and Smirnov, S.V., Increasing hormonal control of skeletal development: an evolutionary trend in amphibians, Front. Ecol. Evol., 2021, vol. 9, Article 733947.

  164. Vassilieva, A.B., Serbinova, I.A., and Poyarkov, N.A., Development of the bony skeleton in two salamander species (Mertensiella caucasica and Chioglossa lusitanica: Salamandridae) with partial embryonization, Dokl. Biol. Sci., 2011, vol. 438, pp. 168–170.

  165. Vassilieva, A.B., Poyarkov, N.A., and Iizuka, K., Pecularities of bony skeleton development in Asian clawed salamanders (Onychodactylus, Hynobiidae) related to embryonization, Biol. Bull., 2013, vol. 40, pp. 589–599.

  166. Vassilieva, A.B., Lai, J.S., Yang, S.F., Chang, Y.H., and Poyarkov, N.A., Development of the bony skeleton in the Taiwan salamander, Hynobius formosanus Maki, 1922 (Caudata: Hynobiidae): Heterochronies and reductions, Vertebr. Zool., 2015, vol. 65, pp. 117–130.

  167. Vassilieva, A.B., Trounov, V.L., Poyarkov, N.A., and Galoyan, E.A., The phytotelm tadpoles of Microhyla arboricola (Anura: Microhylidae) from Vietnam, with comments on reproductive biology and development, Zootaxa, 2017, vol. 4247, pp. 413–428. https://doi.org/10.11646/zootaxa.4247.4.4

  168. Vater, M., Is the prefrontal bone in Alpine newt (Triturus alpestris Laurenti, 1768) of dual origin? J. Anat., 2007, vol. 211, pp. 290–295. https://doi.org/10.1111/j.1469-580.2007.00768.x

    Article  Google Scholar 

  169. Wakahara, M., Spermatogenesis is extraordinarily accerelated in metamorphosis-arrested larvae of a salamander, Hynobius retardatus, Experientia, 1994, vol. 50, pp. 94–98.

    Article  Google Scholar 

  170. Wakahara, M., Heterochrony and neotenic salamanders: possible clues for understanding the animal development and evolution, Zool. Sci., 1996, vol. 13, pp. 765–776.

    Article  Google Scholar 

  171. Wake, D.B., An integrated approach to evolutionary studies of salamanders, Herpetology: current research on the biology of amphibians and reptiles, in Proc. 1st World Herpetol. Congr., Adler, K., Ed., Oxford (OH): Society for the Study of Reptiles and Amphibians, 1992, pp. 163–177.

  172. Wake, D.B., Comparative osteology and evolution of the lungless salamanders, family Plethodontidae, Mem. South. Calif. Acad. Sci., 1966, vol. 4, pp. 1–111.

    Google Scholar 

  173. Wake, D.B. and Hanken, J., Direct development in the lungless salamanders: What are the consequences for developmental biology, evolution and phylogenesis? Int. J. Dev. Biol., 1996, vol. 40, pp. 859–869.

    Google Scholar 

  174. Wake, M.H., Fetal adaptations for viviparity in amphibians, J. Morphol., 2015, vol. 276, pp. 941–960. https://doi.org/10.1002/jmor.20271

    Article  Google Scholar 

  175. Wake, M.H., Reproduction in Caecilians, in Reproductive Biology of South American Vertebrates, Hamlett, W.C., Ed., New York, NY: Springer, 1992, pp. 112–120. https://doi.org/10.1007/978-1-4612-2866-0_8

  176. Wake, M.H., Reproductives modes, ontogenies, and the evolution of body forms, Ann. Biol., 2003, vol. 53, pp. 209–223.

    Google Scholar 

  177. Wake, M.H., The morphology of Idiocranium russeli (Amphibia: Gymnophiona), with comments on miniaturization through heterochrony, J. Morphol., 1986, vol. 189, pp. 1–16.

    Article  Google Scholar 

  178. Wake, T.A., Wake, D.B., and Wake, M.H., The ossification sequence of Aneides lugubris, with comments on heterochrony, J. Herpetol., 1983, vol. 17, pp. 10–22. https://doi.org/10.2307/1563775

    Article  Google Scholar 

  179. Weisbecker, V. and Mitgutsch, C., A large-scale survey of heterochrony in anuran cranial ossification patterns, J. Zool. Syst. Evol. Res., 2010, vol. 48, pp. 332–347. https://doi.org/10.1111/j.1439-0469.2010.00570.x

    Article  Google Scholar 

  180. Wells, K.D., The Ecology and Behavior of Amphibians, Chicago: Univ. Chicago Press, 2007.

    Book  Google Scholar 

  181. Werneburg, R., Die Stegocephalen (Amphibia) der Goldlauterer Schichten (Unterrotliegendes, Perm) des Thuringer Waldes, Teil 1: Apateon fragrifer (Wittard), Freiberger Fortschungshefte, 1986, vol. 410, pp. 88–101.

    Google Scholar 

  182. Werneburg, R., Die Branchiosaurier aus dem Unterrotliegend des Dohlener Beckens bei Dresden, Verffentlichungen Naturhist. Mus. Schleusingen, 1991, vol. 6, pp. 75–99.

    Google Scholar 

  183. West-Eberhard, M.J., Developmental Plasticity and Evolution, Oxford, UK: Oxford Univ. Press, 2003.

    Book  Google Scholar 

  184. Wiens, J.J., Ontogeny of the skeleton of Spea bombifrons (Anura: Pelobatidae), J. Morphol., 1989, vol. 202, pp. 29–51. https://doi.org/10.1002/jmor.1052020104

    Article  Google Scholar 

  185. Wiens, J.J., Re-evolution of lost mandibular teeth in frogs after more than 200 million years, and reevaluating Dollo’s law, Evolution, vol. 65, pp. 1283–1296. https://doi.org/10.1111/j.1558-5646.2011.01221.x

  186. Wilbur, H.M., Density-dependent aspects of growth and metamorphosis in Bufo americanus, Ecology, 1977, vol. 58, pp. 196–200. https://doi.org/10.2307/1935122

    Article  Google Scholar 

  187. Wild, E.R., Description of the adult skeleton and developmental osteology of the hyperossified horned frog, Ceratophrys cornuta (Anura: Leptodactylidae), J. Morphol., 1997, vol. 232, pp. 162–206.

    Article  Google Scholar 

  188. Wollenberg Valero, K.C., Garcia-Porta, J., Rodrıguez, A., et al., Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases, Nat. Commun., 2017, vol. 8, 15213. https://doi.org/10.1038/ncomms15213

    Article  Google Scholar 

  189. Worthington, R.D. and Wake, D.B., Larval morphology and ontogeny of the ambystomatid salamander, Rhyacotriton olympicus, Am. Midl. Nat., 1971, vol. 85, pp. 349–365.

    Article  Google Scholar 

  190. Yeh, J., The effect of miniaturized body size on skeletal morphology of frogs, Evolution, 2002, vol. 56, pp. 628–641.

    Google Scholar 

  191. Zakhvatkin, A.A., Konspekt kursa “Embriologiya chlenistonogikh (Abstract of the Course "Embryology of Arthropods”, Moscow: Moscow State Univ., 1953, pp. 335–378.

  192. Zhou, Y., Shearwin-Whyatt, L., Li, J., et al., Platypus and echidna genomes reveal mammalian biology and evolution, Nature, 2021, vol. 592, pp. 756–762. https://doi.org/10.1038/s41586-020-03039-0

    Article  Google Scholar 

Download references

ACKNOWLEDMENTS

The authors are deeply grateful to A.A. Tsessarsky and V.L. Trounov for technical assistance in preparing the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Smirnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, S.V., Vassilieva, A.B. Amphibian Ontogeny: Major Trends, Mechanisms, and Paradoxes of Evolution. Paleontol. J. 56, 1257–1273 (2022). https://doi.org/10.1134/S003103012211017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003103012211017X

Keywords:

Navigation