Skip to main content
Log in

Functional asymmetry of a particular type of retinal neurons in apparent symmetry of its morphology

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

Direction-selective neurons exist at different levels of the visual system in different vertebrates and invertebrates. In accordance with the name, such cells respond differently (asymmetrically) to different moving stimuli, depending on their direction. Contrast borders, stripes, spots which move in preferred direction cause a strong impulse discharge of the neuron, but the same stimuli moving in opposite direction (“0”-direction) do not cause response. Thus, these neurons are capable of recognition of the direction of stimulus movement. It is possible to use this in different forms of visual-based behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, H.B., Hill, R.M, and Levick, W.R., Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit, J. Physiol., 1964, vol. 173, pp. 377–407.

    Google Scholar 

  • Barlow, H.B. and Levick, W.R., The mechanism of directionally selective units in rabbit’s retina, J. Physiol., 1965, vol. 178, pp. 477–504.

    Google Scholar 

  • Briggman, K.L., Helmstaedter, M., and Denk, W., Wiring specificity in the direction-selectivity circuit of the retina, Nature, 2011, vol. 471, pp. 183–188.

    Article  Google Scholar 

  • Borst, A. and Euler, T., Seeing things in motion: Models, circuits, and mechanisms, Neuron, 2011, vol. 71, no. 6, pp. 974–994.

    Article  Google Scholar 

  • Chen, Y.-C. and Chiao, C.-C., Symmetrical synaptic patterns between starburst amacrine cells and direction selective ganglion cells in the rabbit retina, J. Compar. Neurol., 2008, vol. 508, pp. 175–183.

    Article  Google Scholar 

  • Chen, M., Weng, S., Deng, Q., et al., Physiological properties of direction-selective ganglion cells in early postnatal and adult mouse retina, J. Physiol., 2009, vol. 587, no. 4, pp. 819–828.

    Article  Google Scholar 

  • Coombs J.L., Van Der List, D., and Chapula, L.M., Morphological properties of mouse retinal ganglion cells during postnatal development, J. Compar. Neurol., 2007, vol. 503, pp. 803–814.

    Article  Google Scholar 

  • Damjanovic-, I., Maximova, E.M., and Maximov, V.V., Receptive field sizes of direction-selective units in the fish tectum, J. Integr. Neurosci., 2009. vol. 8, no. 1, pp. 77–93.

    Article  Google Scholar 

  • Dong, W., Sun, W., Zhang, Y., et al., Dendritic relationship between starburst amacrine cells and direction selective ganglion cells in the rabbit retina, J. Physiol., 2004, vol. 556, pp. 11–17.

    Article  Google Scholar 

  • Elstrott, J., Anishchenko, A., Greschner, M., et al., Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves, Neuron, 2008, vol. 58, no. 4, pp. 499–506.

    Article  Google Scholar 

  • Euler, T., Detwiler, P.B., and Denk, W., Directionally selective calcium signals in dendrites of starburst amacrine cells, Nature, 2002, vol. 418, pp. 845–852.

    Article  Google Scholar 

  • Famiglietti, E.V., Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina, J. Compar. Neurol., 1992, vol. 324, pp. 322–335.

    Article  Google Scholar 

  • Fried, S.I., Münch, T.A., and Werblin, F.S., Mechanisms and circuitry underlying directional selectivity in the retina, Nature, 2002, vol. 420, pp. 411–414.

    Article  Google Scholar 

  • Fuerst, P.G., Koizumi, A., Masland, R.H., and Burgess, R.W., Neurite arborization and mosaic spacing in the mouse retina require DSCAM, Nature, 2008, vol. 451, pp. 470–474.

    Article  Google Scholar 

  • Gabriel, J.P., Trivedi, C.A., Maurer, C.M., et al., Layerspecific targeting of direction-selective neurons in the zebrafish optic tectum, Neuron, 2012, vol. 76, pp. 1147–1160.

    Article  Google Scholar 

  • Giolli, R.A, Blanks, R.H.I., and Lui, F., The accessory optic system: Basic organization with an update on connectivity, neurochemistry, and function, Progr. Brain Res., 2005, vol. 151, pp. 407–440.

    Article  Google Scholar 

  • Grama, A. and Engert, F., Direction selectivity in the larval zebrafish tectum is mediated by asymmetrical inhibition, Front. Neural Circuits, September 2012, vol. 6, art. 59, pp. 1–4 [www.frontiersin.org].

    Article  Google Scholar 

  • He, S. and Masland, R.H., On direction-selective ganglion cells in the rabbit retina: Dendritic morphology and pattern of fasciculation, Vis. Neurosci., 1998, vol. 15, pp. 369–375.

    Article  Google Scholar 

  • He, S., Jin, Z.F., and Masland, R.H., The nondiscriminating zone of directionally selective retinal ganglion cells: Comparison with dendritic structure and implications for mechanism, J. Neurosci., 1999, vol. 19, pp. 8049–8056.

    Google Scholar 

  • Jacobson, M. and Gaze, R.M., Types of visual response from single units in the optic tectum and optic nerve of the goldfish, Q. J. Exp. Physiol., 1964, vol. 49, pp. 199–209.

    Google Scholar 

  • Kay, J.N., De la Huerta, I., Kim, I.-J., et al., Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections, J. Neurosci., 2011, vol. 31, no. 21, pp. 7753–7762.

    Article  Google Scholar 

  • Kim, I.-J., Zhang, Y., Yamagata, M., et al., Molecular identification of a retinal cell type that responds to upward motion, Nature, 2008, vol. 452, pp. 478–482.

    Article  Google Scholar 

  • Kittila, C.A. and Massey, S.C., Pharmacology of directionally selective ganglion cells in the rabbit retina, J. Neurophysiol., 1997, vol. 77, pp. 675–689.

    Google Scholar 

  • Kong, J.H., Fish, D.R., Rockhill, R.L., and Masland, R.H., Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits, J. Compar. Neurol., 2005, vol. 489, no. 3, pp. 293–310.

    Article  Google Scholar 

  • Lee, S., Kim, K., and Zhou, Z.J., Role of ACh-GABA cotransmission in detecting image motion and motion direction, J. Neuron., 2010, vol. 68, no. 6, pp. 1159–1172.

    Article  Google Scholar 

  • Masland, R.H., The fundamental plan of the retina, Nature, 2001, vol. 4, pp. 877–886.

    Google Scholar 

  • Masland, R.H., The neuronal organization of the retina, Neuron, 2012, vol. 76, no. 2, pp. 266–80.

    Article  Google Scholar 

  • Masland, R.H., Mills, J.W., and Hayden, S.A., Acetylcholine-synthesizing amacrine cells: Identification and selective staining by using radioautography and fluorescent markers, Proc. Roy. Soc. London B, 1984, vol. 223, pp. 79–100.

    Article  Google Scholar 

  • Marc, R.E., Neurochemical stratification in the inner plexiform layer of the vertebrate retina, Vis. Res., 1986, vol. 26, pp. 223–238.

    Article  Google Scholar 

  • Marc, R.E. and Jones, B.W., Molecular phenotyping of retinal ganglion cells, J. Neurosci., 2002, vol. 22, no. 2, pp. 413–427.

    Google Scholar 

  • Maturana, H.R. and Frenk, S., Directional movement and horizontal edge detectors in the pigeon retina, Science, 1963, vol. 142, pp. 977–979.

    Article  Google Scholar 

  • Maximov, V.V., Maximova, E.M., and Maximov, P.V., Classification of direction-selective elements recorded in the tectum of crucian, Sens. Sist., 2005a, vol. 19, no. 4, pp. 342–356.

    Google Scholar 

  • Maximov, V., Maximova, E., and Maximov, P., Direction selectivity in the goldfish tectum revisited, Ann. New York Acad. Sci., 2005b, vol. 1048, pp. 198–205.

    Article  Google Scholar 

  • Maximov, V.V., Maximova, E.M., and Maximov, P.V., Color characteristics of detectors of movement direction projecting in the crucian tectum, Sens. Sist., 2007, vol. 21, no. 1, pp. 19–28.

    Google Scholar 

  • Maximova, E.M., Neurotransmitters of the retina and reorganizations in the nerve layers of the retina at degeneration of photoreceptors: Review, Sens. Sist., 2008, vol. 22, no. 1, pp. 36–51.

    Google Scholar 

  • Maximova, E.M., Molecular identification of retina neurons Sens. Sist., 2009, vol. 23, no. 4, pp. 283–292.

    Google Scholar 

  • Maximova, E.M., Levichkina, E.V., and Utina, I.A., Morphology of presumable direction-selective ganglion cells, traced DiI in fish retina, Sens. Sist., 2006, vol. 20, no. 4, pp. 279–287.

    Google Scholar 

  • Maximova, E., Pushchin, I., Maximov, P., and Maximov, V., Presynaptic and postsynaptic visual responses in the goldfish rectum as revealed by calcium channel blocker, JIN, 2010, vol. 11, no. 2, pp. 183–191.

    Google Scholar 

  • Nikolaou, N., Lowe, A.S., Walker, A.S., et al., Parametric functional maps of visual inputs to the tectum, Neuron, 2012, vol. 76, pp. 317–324.

    Article  Google Scholar 

  • Portugues, R. and Engert, F., The neural basis of visual behaviors in the larval zebrafish, Front. Neural. Circuits, 2012, vol. 6, art. 59, pp. 1–9.

    Google Scholar 

  • Rivlin-Etzion, M., Zhou, K., Wei, W., et al., Transgenic mice reveal unexpected diversity of ON-OFF direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing, J. Neurosci., 2011, vol. 31, no. 24, pp. 8760–8769.

    Article  Google Scholar 

  • Rockhill, R.L., Daly, F.J., MacNeil, M.A., et al., The diversity of ganglion cells in a mammalian retina, J. Neurosci., 2002, vol. 22, pp. 3831–3843.

    Google Scholar 

  • Roska, B. and Werblin, F., Vertical interactions across ten parallel, stacked representations in the mammalian retina, Nature, 2001, vol. 410, pp. 583–587.

    Article  Google Scholar 

  • Stacy, R.C. and Wong, R.O.L., Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina, J. Compar. Neurol., 2003, vol. 456, pp. 154–166.

    Article  Google Scholar 

  • Sun, W., Deng, Q., Levick, W.R., and He, S., On direction-selective ganglion cells in the mouse retina, J. Physiol., 2006, vol. 576, no. 1, pp. 197–202.

    Article  Google Scholar 

  • Sun, L., Han, X., and He, S., Direction-selective circuitry in rat retina develops independently of GABAergic, cholinergic and action potential activity, PLoS, 2011, vol. 6, no. 5, e19477, pp. 1–10.

    Article  Google Scholar 

  • Tsvilling, V., Donchin, O., Shamir, M., and Segev, R., Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells, Europ. J. Neurosci., 2012, vol. 35, pp. 436–444.

    Article  Google Scholar 

  • Uchiyama, H., Kanaya, T., and Sonohata, S., Computation of motion direction by quail retinal ganglion cells that have a nonconcentric receptive field, Vis. Neurosci., 2000, vol. 17, no. 2, pp. 263–271.

    Article  Google Scholar 

  • Vaney, D.I., Territorial organization of direction-selective ganglion cells in rabbit retina, J. Neurosci., 1994, vol. 14, pp. 6301–6316.

    Google Scholar 

  • Weng, S., Sun, W., and He, S., Identification of ON-OFF direction-selective ganglion cells in the mouse retina, J. Physiol., 2005, vol. 562, no. 3, pp. 915–923.

    Article  Google Scholar 

  • Yamagata, M. and Sanes, J.R., Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina, Nature, 2008, vol. 451, pp. 465–469.

    Article  Google Scholar 

  • Yamagata, M., Sanes, J. R., Weiner, A., et al., Labeled lines in the retinotectal system: Markers for retinorecipient sublaminae and the retinal ganglion cell subsets that innervate them, Mol. Cell. Neurosci., 2006, vol. 33, pp. 296–310.

    Article  Google Scholar 

  • Yonehara, K., Ishikane, H., Sakuta, H., et al., Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion, PLoS ONE, 2009, vol. 4, pp. e4420.

    Article  Google Scholar 

  • Yonehara, K., Shintani, T., Suzuki, R., et al., Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse, PLoS ONE, 2008, vol. 3, pp. e1533.

    Article  Google Scholar 

  • Yoshida, K., Watanabe, D., Ishikane, H., et al., A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement, Neuron, 2001, vol. 30, pp. 771–780.

    Article  Google Scholar 

  • Zenkin, G.M. and Pigarev, I.N., Detector characteristics of ganglion cells in the retina of pike, Biofizika, 1969, vol. 14, pp. 722–730.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Maximova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maximova, E.M. Functional asymmetry of a particular type of retinal neurons in apparent symmetry of its morphology. Paleontol. J. 48, 1303–1308 (2014). https://doi.org/10.1134/S0031030114120065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030114120065

Keywords

Navigation