Skip to main content
Log in

Generalized Null-Ellipsometry in the Polarizer–Sample–Analyzer Scheme

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The null ellipsometry technique of generalized ellipsometry based on using a compensator-free polarizer–sample–analyzer scheme for the case of incidence of an s- or p-polarized light on an anisotropic system is analyzed. Analytical expressions establishing a relation between measured angular quantity (analyzer azimuth at minimum intensity of detected radiation) and elements of the (2 × 2) anisotropic Jones matrix are derived. The dependence of this angular quantity on sample orientation (azimuth) is proposed to be used for determining optic-geometrical parameters of studied anisotropic systems. Sensitivity of the proposed method is estimated and is found to be comparable with that of the polarizer–compensator–sample–analyzer scheme. A comparative analysis of the discussed method with the well-known photometric method of generalized ellipsometry in the polarizer–sample–analyzer scheme based on measurement of the dependence of reflected-light intensity on sample azimuth at fixed polarizer and analyzer positions is presented. It is estimated that an error of a single arc minute in the proposed method and a relative error of determining the energy reflection coefficient of 0.05% in the photometric method of the generalized ellipsometry correspond to the same sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

    Google Scholar 

  2. Principles of Ellipsometry, Ed. by A. V. Rzhanov (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  3. Ellipsometry at the Nanoscale, Ed. by M. Losurdo and K. Hingerl (Springer, Berlin, 2013).

    Google Scholar 

  4. V. A. Shvets, E. V. Spesivtsev, S. V. Rykhlitskii, and N. N. Mikhailov, Nanotechnol. Russ. 4, 201 (2009). https://doi.org/10.1134/S1995078009030082

    Article  Google Scholar 

  5. N. V. Sopinskii, Optoelectron., Instrum. Data Process., No. 1, 95 (1997).

  6. Y. Murakami, T. Ogawa, M. Wakaki, and S. Kawabata, Jpn. J. Appl. Phys. 39, 509 (2000). https://doi.org/10.1143/JJAP.39.509

    Article  ADS  Google Scholar 

  7. G. J. Babonas, A. Reza, R. Szymczak, M. Baran, S. Shiryaev, J. Fink-Finowicki, and H. Szymczak, Acta Phys. Polon. A 105, 197 (2004). https://doi.org/10.12693/APhysPolA.105.197

    Article  ADS  Google Scholar 

  8. A. A. Novikov, I. A. Khramtsovskii, V. Yu. Ivanov, I. S. Fedorov, and A. Turkboev, Izv. Vyssh. Uchebn. Zaved., Priborostr. 52 (1), 62 (2009).

    Google Scholar 

  9. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, Appl. Phys. Lett. 94, 011914 (2009). https://doi.org/10.1063/1.3062996

    Article  ADS  Google Scholar 

  10. N. V. Sopinskii, V. S. Khomchenko, O. S. Litvin, A. K. Savin, N. A. Semenenko, A. A. Evtukh, V. P. Sobolevskii, and G. P. Ol’khovik, Tech. Phys. 56, 1665 (2011). https://doi.org/10.1134/S1063784211110259

    Article  Google Scholar 

  11. M. V. Sopinskyy, N. A. Vlasenko, I. P. Lisovskyy, S. O. Zlobin, Z. F. Tsybrii, and L. I. Veligura, Nanoscale Res. Lett. 10, 232 (2015). https://doi.org/10.1186/s11671-015-0933-0

    Article  ADS  Google Scholar 

  12. N. V. Sopinskii, Opt. Spectrosc. 123, 778 (2017). https://doi.org/10.1134/S0030400X17110212

    Article  ADS  Google Scholar 

  13. T. Kh. Khasanov, Opt. Spectrosc. 127, 271 (2019). https://doi.org/10.1134/S0030400X19080149

    Article  ADS  Google Scholar 

  14. R. M. A. Azzam and N. M. Bashara, J. Opt. Soc. Am. A 64, 128 (1974). https://doi.org/10.1364/JOSA.64.000128

    Article  ADS  Google Scholar 

  15. A. Yu. Tronin, Prib. Tekh. Eksp., No. 6, 123 (1989).

  16. J. Lee, P. I. Rovira, I. An, and R. W. Collins, J. Opt. Soc. Am. A 18, 1980 (2001). https://doi.org/10.1364/JOSAA.18.001980

    Article  ADS  Google Scholar 

  17. N. Ya. Gorban and L. V. Poperenko, J. Appl. Specrosc. 33, 1120 (1980). https://doi.org/10.1007/BF00608389

    Article  ADS  Google Scholar 

  18. W. Xu, L. T. Wood, and T. D. Golding, Thin Solid Films 384, 276 (2001). https://doi.org/10.1016/S0040-6090(00)01861-7

    Article  ADS  Google Scholar 

  19. W. Xu, L. T. Wood, and T. D. Golding, Surf. Sci. 495, 153 (2001). https://doi.org/10.1016/S0039-6028(01)01559-X

    Article  ADS  Google Scholar 

  20. S. C. Som and C. Chowdhury, J. Opt. Soc. Am. 62, 10 (1972). https://doi.org/10.1364/JOSA.62.000010

    Article  ADS  Google Scholar 

  21. R. M. A. Azzam, J. Opt. Soc. Am. 68, 514 (1978). https://doi.org/10.1364/JOSA.68.000514

    Article  ADS  Google Scholar 

  22. I. Z. Indutnyi, V. I. Mynko, M. V. Sopinskyy, and K. V. Svezhentsova, J. Appl. Spectrosc. 86, 1058 (2020). https://doi.org/10.1007/s10812-020-00940-4

    Article  ADS  Google Scholar 

  23. M. V. Sopinskyy, I. Z. Indutnyi, K. V. Michailovska, P. E. Shepeliavyi, and V. M. Tkach, Semicond. Phys. Quantum. Electron. Optoelectron. 14, 273 (2011). https://doi.org/10.15407/spqeo14.03.273

    Article  Google Scholar 

  24. J. Monin and G. A. Boutry, Nouv. Rev. Opt. 4, 159 (1973). https://doi.org/10.1088/0335-7368/4/3/305

    Article  Google Scholar 

  25. S. A. Alekseev and V. T. Prokopenko, Meas. Tech. 27, 777 (1984). https://doi.org/10.1007/BF00863738

    Article  Google Scholar 

  26. A. A. Tikhii, Cand. Sci. (Phys. Math.) Dissertation (Galkin Donets. Phys.-Tech. Inst., Donetsk, 2018).

  27. T. P. Sosnowski, Opt. Commun. 4, 408 (1972). https://doi.org/10.1016/0030-4018(72)90112-5

    Article  ADS  Google Scholar 

  28. J. Lekner, J. Phys.: Condens. Matter 3, 6121 (1991). https://doi.org/10.1088/0953-8984/3/32/017

    Article  ADS  Google Scholar 

  29. J. Lekner, J. Opt. Soc. Am. A 10, 2059 (1993). https://doi.org/10.1364/JOSAA.10.002059

    Article  ADS  Google Scholar 

  30. R. Bhandari, J. Opt. Soc. Am. A 26, 2368 (2009). https://doi.org/10.1364/JOSAA.26.002368

    Article  ADS  Google Scholar 

  31. J. Lekner, J. Opt. Soc. Am. A 14, 1359 (1997). https://doi.org/10.1364/JOSAA.14.001359

    Article  ADS  Google Scholar 

  32. D. J. de Smet, J. Opt. Soc. Am. 65, 461 (1975). https://doi.org/10.1364/JOSA.65.000461

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sopinskyy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Shumay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sopinskyy, M.V., Ol’khovik, G.P. Generalized Null-Ellipsometry in the Polarizer–Sample–Analyzer Scheme. Opt. Spectrosc. 130, 92–101 (2022). https://doi.org/10.1134/S0030400X22010155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X22010155

Keywords:

Navigation