Skip to main content
Log in

Influence of Surface Roughness on the Light Transmission Through the Boundaries of Luminescent Materials in Radiation Detectors

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The optical transfer properties of an imaging system are affected by the performance of the discrete cascaded system stages that transfer efficiently the optical signal. Apart from the contribution of each component to the overall optical propagation, crucial role also plays the intermediate surface conditions. Surface roughness is characterized by irregularities with respect with the ideal smooth form. The degree of roughness has an influence on the surface behavior affecting correspondingly the overall enhancement of system’s optical performance. In this manuscript, the angle dependent effect of surface roughness on phosphor—optical materials configuration is provided taking into account eight luminescent materials (CsI, Y3Al5O12, Y2O3, Bi4Ge3O12, CaWO4, ZnS, Lu2O3, and Gd2O2S) and three optical materials (InGaAs, indium tin oxide, and SiO2). Results showed that higher transmission optical properties exhibited the: (i) CsI–InGaAs combination, (ii) ZnS–indium tin oxide, and (iii) ZnS–SiO2 combinations. The transmission factor was also quantitatively affected by increasing the surface roughness values and by decreasing the incident polar angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Bhushan, in Modern Tribology Handbook, 1st ed. (Taylor and Francis Group, Boca Raton, 2000), Chap. 2

    Book  Google Scholar 

  2. J. C. le Bosse, G. Hansali, J. Lopez, and J. C. Dumas, Wear 224, 236 (1999).

    Article  Google Scholar 

  3. B. Cahill and M. A. El Baradie, J. Mater. Process. Technol. 119, 299 (2001).

    Article  Google Scholar 

  4. J. Liu, K. Yamazaki, Y. Zhou, and S. Matsumiya, J. Mater. Sci. Technol. 124, 515 (2002).

    Google Scholar 

  5. N. A. Feidenhans’l, P.-E. Hansen, L. Pilný, M. H. Madsen, G. Bissacco, J. C. Petersen, and R. Taboryski, Meas. Sci. Technol. 26, 0852088 (2015).

    Article  Google Scholar 

  6. K. Mitsui, Precis. Eng. 8, 212 (1986).

    Article  Google Scholar 

  7. S. Schröder, A. Duparré, L. Coriand, A. Tünnermann, D. H. Penalver, and J. E. Harvey, Opt. Express 19, 9820 (2011).

    Article  ADS  Google Scholar 

  8. N. Zhong, X. Zhu, Q. Liao, Y. Wang, R. Chen, and Y. Sun, Appl. Opt. 52, 3937 (2013).

    Article  ADS  Google Scholar 

  9. H. P. Alves, J. F. Nascimento, E. Fontana, I. J. S. Coêlho, and J. F. Martins Filho, J. Lightwave Technol. 36, 2597 (2018).

    Article  ADS  Google Scholar 

  10. F. Sequeira, N. Cennamo, A. Rudnitskaya, R. Nogueira, L. Zeni, and L. Bilro, Sensors 19, 2476 (2019).

    Article  ADS  Google Scholar 

  11. P. F. Liaparinos, Appl. Phys. B 125, 151 (2019).

    Article  ADS  Google Scholar 

  12. J. C. Dainty and R. Shaw, Image Science (Academic, New York, 1974).

    Google Scholar 

  13. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).

    Google Scholar 

  14. P. Liaparinos and S. David, Crystals 10, 174 (2020).

    Article  Google Scholar 

  15. T. Yamaguchi, H. Tamura, S. Taga, and S. Tsuchiya, Appl. Opt. 25, 2703 (1986).

    Article  ADS  Google Scholar 

  16. A. Roos and D. Ronnow, Appl. Opt. 33, 7908 (1994).

    Article  ADS  Google Scholar 

  17. M. J. Weber, J. Lumin. 100, 35 (2002).

    Article  Google Scholar 

  18. C. W. E. van Eijk, Phys. Med. Biol. 47, R85 (2002).

    Article  ADS  Google Scholar 

  19. P. F. Liaparinos, J. Biomed. Opt. 17, 126013 (2012).

    Article  ADS  Google Scholar 

  20. P. F. Liaparinos, Med. Phys. 40, 1101911 (2013).

    Article  Google Scholar 

  21. P. Liaparinos, Biomed. Phys. Eng. Express 3, 015006 (2017).

    Article  Google Scholar 

  22. A. Badano and J. Sempau, Phys. Med. Biol. 51, 1545 (2006).

    Article  Google Scholar 

  23. H. K. Kim, I. A. Cunningham, Z. Yin, and G. Cho, Int. J. Precis. Eng. Manuf. 9, 86 (2006).

    Google Scholar 

  24. P. Vaqueiro and M. A. Lopez-Quintela, J. Mater. Chem. 8, 161 (1998).

    Article  Google Scholar 

  25. A. Fukabori, T. Yanagida, J. Pejchal, S. Maeo, Y. Yokota, A. Yoshikawa, T. Ikegami, F. Moretti, and K. Kamada, J. Appl. Phys. 107, 073501 (2010).

    Article  ADS  Google Scholar 

  26. M. Moszynski, T. Ludziejewski, D. Wolski, W. Klamra, and L. O. Norlin, Nucl. Instrum. Methods Phys. Res., Sect. A 345, 461 (1994).

    Google Scholar 

  27. S. L. David, C. M. Michail, M. Roussou, E. Nirgianaki, A. E. Toutountzis, I. G. Valais, G. Fountos, P. F. Liaparinos, I. Kandarakis, and G. Panayiotakis, IEEE Trans. Nucl. Sci. 57, 951 (2010).

    Article  ADS  Google Scholar 

  28. W. Hayes, J. Lumin. 31–32, 99 (1984).

    Article  Google Scholar 

  29. D. Cavouras, I. Kandarakis, G. S. Panayiotakis, E. K. Evangelou, and C. D. Nomicos, Med. Phys. 23, 1965 (1996).

    Article  Google Scholar 

  30. W. Hayes, M. J. Kane, O. Salminen, and A. I. Kuznetsov, J. Phys. C: Solid State Phys. 17, L383 (1984).

    Article  ADS  Google Scholar 

  31. S. V. Moharil, Bull. Mater. Sci. 17, 25 (1994).

    Article  Google Scholar 

  32. F. Rogemond, C. Pedrini, B. Moine, and G. Boulon, J. Lumin. 33, 455 (1985).

    Article  Google Scholar 

  33. Y. Zhang, N. A. W. Holzwarth, and R. T. Williams, Phys. Rev. B 57, 12738 (1998).

    Article  ADS  Google Scholar 

  34. A. Phuruangrat, T. Thongtem, and S. Thongtem, J. Exp. Nanosci. 5, 263 (2010).

    Article  Google Scholar 

  35. A. N. Yazici, M. Öztas, and M. Bedir, Opt. Mater. 29, 1091 (2007).

    Article  ADS  Google Scholar 

  36. J. S. McCloy, M. Bliss, B. Miller, Z. Wang, and S. Stave, J. Lumin. 157, 416 (2015).

    Article  Google Scholar 

  37. I. Kandarakis, D. Cavouras, D. Nikolopoulos, A. Anastasiou, N. Dimitropoulos, N. Kalivas, E. Ventouras, I. Kalatzis, C. Nomicos, and G. Panayiotakis, Radiat. Meas. 39, 263 (2005).

    Article  Google Scholar 

  38. P. Liaparinos and I. Kandarakis, Med. Phys. 36, 1985 (2009).

    Article  Google Scholar 

  39. M. Nikl, Meas. Sci. Technol. 17, R37 (2006).

    Article  ADS  Google Scholar 

  40. R. H. Bartram, A. Lempicki, L. A. Kappers, and D. S. Hamilton, J. Lumin. 106, 169 (2004).

    Article  Google Scholar 

  41. E. Zych, D. Hreniak, W. Strek, L. Kepinski, and K. Domagala, J. Alloys Compd. 341, 391 (2002).

    Article  Google Scholar 

  42. P. R. Granfors and D. Albagli, J. Soc. Inf. Display 17, 535 (2009).

    Article  Google Scholar 

  43. R. Morlotti, M. Nicl, M. Piazza, and C. Boragno, J. Lumin. 72–74, 772 (1997).

    Article  Google Scholar 

  44. M. J. Yaffe, in Handbook of Medical Imaging, Vol. 1: Physics and Psychophysics, Ed. by J. Beutel, H. L. Kundel, and R. L. van Metter (SPIE, Bellingham, WA, 2000), p. 329.

  45. C. Convertino, C. Zota, H. Schmid, D. Caimi, M. Sousa, K. Moselund, and L. Czornomaz, Materials 12, 87 (2019).

    Article  ADS  Google Scholar 

  46. J. A. del Alamo, D. Antoniadis, A. Guo, D.-H. Kim, T.-W. Kim, J. Lin, W. Lu, A. Vardi, and X. Zhao, in Proceedings of the IEEE International Electron Devices Meeting, USA, 2013.

  47. A. N. Shipway, E. Katz, and I. Willner, Chem. Phys. Chem. 1, 18 (2000).

    Article  Google Scholar 

  48. Md. Z. H. Khan, Cogent Eng. 3, 1170097 (2016).

  49. R. Kumar, Mater. Technol. 10, 202 (1995).

    Article  Google Scholar 

  50. D. L. Griscom, J. Non-Cryst. Solids 24, 155 (1977).

  51. R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni, Photon. Res. 7, 201 (2019).

    Article  Google Scholar 

  52. M. J. Yaffe and J. A. Rowlands, Phys. Med. Biol. 42, 1 (1997).

    Article  Google Scholar 

  53. S. M. Gruner, M. W. Tate, and E. F. Eikenberry, Rev. Sci. Instrum. 73, 2816 (2002).

    ADS  Google Scholar 

  54. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  55. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th ed. (Pergamon, Oxford, 1986).

    MATH  Google Scholar 

  56. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, MA, 1987).

    Google Scholar 

  57. K.-E. Peiponen and T. Tsuboi, Opt. Laser Technol. 22, 127 (1990).

    Article  ADS  Google Scholar 

  58. M. N. Polyanskiy, Refractive Index Database. https://refractiveindex.info/.

  59. P. Liaparinos, N. Kalyvas, E. Katsiotis, and I. Kandarakis, J. Instrum. 11, 10001 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Due to the retirement of Prof. Ioannis Kandarakis, the author would like to express his gratitude as being the key person who inspired and thereafter supervised him for several years in the field of luminescent materials used in medical image science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Liaparinos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaparinos, P. Influence of Surface Roughness on the Light Transmission Through the Boundaries of Luminescent Materials in Radiation Detectors. Opt. Spectrosc. 129, 1257–1265 (2021). https://doi.org/10.1134/S0030400X21090149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21090149

Keywords:

Navigation