Skip to main content
Log in

Three-Level Approximation upon Calculation of Parameters of Optically Detected Magnetic Resonance under the Conditions of Strong Laser Pumping

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

An algorithm of approximate solution of an essentially nonlinear problem of parameters of optically detected magnetic resonance in the ground state of alkali atoms in an optically dense medium under the conditions of strong narrow-band optical pumping that induces transparency of atomic medium and partial suppression of spin-exchange broadening is proposed. Straightforward solution of the Liouville’s equation is complicated in this case by the fact that relaxation time of each of the levels of the hyperfine and Zeeman structures of the ground state is determined by populations of all other levels, which results in the necessity of solving a self-consistent problem in a multilevel system and requires using supercomputers, as a rule. In the present work, approximations that allow substantially simplifying and accelerating calculation are proposed. A two-beam MX-scheme of a magnetometric sensor is used as an example to compare the results of calculations with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. Budker and M. Romalis, Nat. Phys. 3, 227 (2007). https://doi.org/10.1038/nphys566

    Article  Google Scholar 

  2. M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, Rev. Mod. Phys. 65, 413 (1993). https://doi.org/10.1103/RevModPhys.65.413

    Article  ADS  Google Scholar 

  3. A. M. Coffey, M. L. Truong, and E. Y. Chekmenev, J. Magn. Res. 237, 169 (2013). https://doi.org/10.1016/j.jmr.2013.10.013

    Article  ADS  Google Scholar 

  4. K. A. Barantsev et al., J. Exp. Theor. Phys. 132 (2), 189 (2021). https://doi.org/10.1134/S106377612101009X

  5. T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, Phys. Rev. A 84, 043416 (2011). https://doi.org/10.1103/PhysRevA.84.043416

    Article  ADS  Google Scholar 

  6. V. Schultze, B. Schillig, R. IJsselsteijn, T. Scholtes, S. Woetzel, and R. Stolz, Sensors 17, 561 (2017). https://doi.org/10.3390/s17030561

    Article  ADS  Google Scholar 

  7. N. D. Bhaskar, J. Camparo, W. Happer, and A. Sharma, Phys. Rev. A 23, 3048 (1981). https://doi.org/10.1103/PhysRevA.23.3048

    Article  ADS  Google Scholar 

  8. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, Nature (London, U.K.) 422, 596 (2003). https://doi.org/10.1038/nature01484

    Article  ADS  Google Scholar 

  9. H. B. Dang, A. C. Maloof, and M. V. Romalis, Appl. Phys. Lett. 97, 151110 (2010). https://doi.org/10.1063/1.3491215

    Article  ADS  Google Scholar 

  10. A. K. Vershovskii, A. S. Pazgalev, and M. V. Petrenko, Tech. Phys. Lett. 46, 877 (2020). https://doi.org/10.1134/S1063785020090126

    Article  ADS  Google Scholar 

  11. E. N. Popov et al., JETP Lett. 108, 513 (2018). https://doi.org/10.1134/S0021364018200122

    Article  ADS  Google Scholar 

  12. D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, Phys. Rev. A 62, 043403 (2000). https://doi.org/10.1103/PhysRevA.62.043403

    Article  ADS  Google Scholar 

  13. W. E. Bell and A. L. Bloom, Phys. Rev. Lett. 6, 280 (1961). https://doi.org/10.1103/PhysRevLett.6.280

    Article  ADS  Google Scholar 

  14. I. Fescenko, P. Knowles, A. Weis, and E. Breschi, Opt. Express 21, 15121 (2013). https://doi.org/10.1364/OE.21.015121

    Article  ADS  Google Scholar 

  15. W. Happer and A. C. Tam, Phys. Rev. A 16, 1877 (1977). https://doi.org/10.1103/PhysRevA.16.1877

    Article  ADS  Google Scholar 

  16. W. Happer, Progr. Quant. Electron. 1, 51 (1970).

    Article  ADS  Google Scholar 

  17. S. J. Seltzer, Ph. D. Thesis (Princeton Univ. Press, Princeton, 2008).

  18. A. K. Vershovskii, S. P. Dmitriev, G. G. Kozlov, A. S. Pazgalev, and M. V. Petrenko, Tech. Phys. 65, 1193 (2020). https://doi.org/10.1134/S1063784220080204

    Article  Google Scholar 

Download references

Funding

This research was supported by the Russian Foundation for Basic research, project no. 19-29-10004.

Author information

Authors and Affiliations

Authors

Contributions

Experiment—M.V. Petrenko and A.K. Vershovskii; theory—A.K. Vershovskii.

Corresponding author

Correspondence to A. K. Vershovskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershovskii, A.K., Petrenko, M.V. Three-Level Approximation upon Calculation of Parameters of Optically Detected Magnetic Resonance under the Conditions of Strong Laser Pumping. Opt. Spectrosc. 129, 592–596 (2021). https://doi.org/10.1134/S0030400X21040275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21040275

Keywords:

Navigation