Skip to main content
Log in

Generation of an Attosecond Pulse Based on Collective Spontaneous Radiation Emission of a Layer of Three-Level Atoms Excited by a Pair of Unipolar Pulses

  • EXTREMELY STRONG FIELDS AND ULTRASHORT OPTICAL PULSES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A method of coherent controlling the polarization of a medium has been proposed recently for the generation of extremely short pulses. The method is based on the excitation of atomic polarization oscillations and their subsequent stop using a pair of ultrashort pulses. The so-called stopped pulse of the polarization of a medium, which arises in the interval between its excitation and deexcitation, can be a source of an extremely short radiation pulse. In this work, the above-indicated possibility of generation of an isolated attosecond ultraviolet pulse in a three-level resonant medium whose parameters correspond to a hydrogen atom excited by a pair of unipolar X-ray pulses is considered theoretically. In this case, the generation mechanism is of the antenna-type, that is, it is caused by the collective spontaneous emission of pre-phased atoms in the absence of a noticeable decay of their free polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).

    Article  Google Scholar 

  2. F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

    Article  ADS  Google Scholar 

  3. M. Nisoli and G. Sansone, Prog. Quantum Electron. 33, 17 (2009).

    Article  ADS  Google Scholar 

  4. H. C. Wu and J. Meyer-ter-Vehn, Nat. Photon. 6, 304 (2012).

    Article  ADS  Google Scholar 

  5. F. Calegari et al., J. Phys. B: At. Mol. Opt. Phys. 49, 062001 (2016).

    Article  ADS  Google Scholar 

  6. M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, et al., Nature (London, U.K.) 530, 66 (2016).

    Article  ADS  Google Scholar 

  7. T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, and H. J. Wörner, Opt. Express 25, 27506 (2017).

    Article  ADS  Google Scholar 

  8. J. Xu, B. Shen, X. Zhang, et al., Sci. Rep. 8, 2669 (2018).

    Article  ADS  Google Scholar 

  9. Z. Tibai, G. Tóth, A. Nagyváradi, A. Gyöngy, J. A. Fülöp, J. Hebling, and G. Almási, Front. Phys. 6, 140 (2018).

    Article  Google Scholar 

  10. K. Ramasesha, S. R. Leone, and D. M. Neumark, Ann. Rev. Phys. Chem. 67, 41 (2016).

    Article  ADS  Google Scholar 

  11. M. Krüger, C. Lemell, G. Wachter, J. Burgdörfer, and P. Hommelhoff, J. Phys. B: At. Mol. Opt. Phys. 51, 172001 (2018).

    Article  ADS  Google Scholar 

  12. M. Garg and K. Kern, Science (Washington, DC, U. S.) 367, 411 (2020).

    Article  ADS  Google Scholar 

  13. W. C. Jiang, X. M. Tong, R. Pazourek, S. Nagele, and J. Burgdörfer, Phys. Rev. A 101, 053435 (2020).

    Article  ADS  Google Scholar 

  14. M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 42, 2189 (2017).

    Article  ADS  Google Scholar 

  15. A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Yu. A. Tolmachev, and N. N. Rosanov, Phys. Rev. A 95, 013804 (2017).

    Article  ADS  Google Scholar 

  16. R. M. Arkhipov, A. V. Pakhomov, I. Babushkin, Yu. A. Tolmachev, and N. N. Rosanov, JETP Lett. 105, 408 (2017).

    Article  ADS  Google Scholar 

  17. A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, and N. N. Rosanov, Sci. Rep. 9, 7444 (2019).

    Article  ADS  Google Scholar 

  18. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. Babushkin, Phys. Rev. A 101, 043838 (2020).

    Article  ADS  Google Scholar 

  19. E. L. Hahn, Phys. Rev. 77, 297 (1950).

    Article  ADS  Google Scholar 

  20. R. G. Brewer and R. L. Shoemaker, Phys. Rev. Lett. 27, 631 (1971).

    Article  ADS  Google Scholar 

  21. R. G. Brewer and R. L. Shoemaker, Phys. Rev. A 6, 2001 (1972).

    Article  ADS  Google Scholar 

  22. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  23. D. I. Voskresenskii et al., Microwave Antennas and Devices, 2nd ed. (Radiotekhnika, Moscow, 2006) [in Russian].

    Google Scholar 

  24. K. Fujimoto, Mobile Antenna Systems Handbook, 3rd ed. (Artech House, London, 2008).

    Google Scholar 

  25. A. V. Shishlov et al., Zh. Radioelektron., No. 7 (2018).

  26. V. V. Kocharovsky, V. V. Zheleznyakov, E. R. Kocharovskaya, and V. V. Kocharovsky, Phys. Usp. 60, 345 (2017).

    Article  ADS  Google Scholar 

  27. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  28. N. Blombergen and R. V. Pound, Phys. Rev. 95, 8 (1954).

    Article  ADS  Google Scholar 

  29. D. Shishmarev and G. J. Otting, Magn. Reson. 213, 76 (2011).

    Article  ADS  Google Scholar 

  30. V. Krishnan and N. Murali, Prog. Nucl. Magn. Reson. Spectrosc. 68, 41 (2013).

    Article  Google Scholar 

  31. L. Ren et al., Phys. Rev. B 87, 161401 (2013).

    Article  ADS  Google Scholar 

  32. H. A. M. Leymann, A. Foerster, F. Jahnke, J. Wiersig, and C. Gies, Phys. Rev. Appl. 4, 044018 (2015).

    Article  ADS  Google Scholar 

  33. N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735 (1971).

    Article  ADS  Google Scholar 

  34. R. Bonifacio and L. Lugiato, Phys. Rev. A 11, 1507 (1975).

    Article  ADS  Google Scholar 

  35. J. C. MacGillivray and M. S. Feld, Phys. Rev. A 14, 1169 (1976).

    Article  ADS  Google Scholar 

  36. M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).

    Article  ADS  Google Scholar 

  37. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Collective Effects in Optics: Superradiance and Phase Transitions (Fizmatlit, Moscow, 1988; Inst. Phys. Publ., Bristol, 1993).

  38. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, Super-Radiance Multiatomic Coherent Emission (CRC, Boca Raton, 1996).

    Google Scholar 

  39. V. V. Zheleznyakov, V. V. Kocharovskii, and V. V. Kocharovskii, Sov. Phys. Usp. 32, 835 (1989).

    Article  ADS  Google Scholar 

  40. G. O. Ariunbold, W. Yang, A. V. Sokolov, V. A. Sautenkov, and M. O. Scully, Phys. Rev. A 85, 023424 (2012).

    Article  ADS  Google Scholar 

  41. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. V. Pakhomov, and N. N. Rosanov, Opt. Spectrosc. 128, 529 (2020).

    Article  ADS  Google Scholar 

  42. V. L. Ginzburg and V. V. Zheleznyakov, Comm. Astrophys. Space Sci. 2, 197 (1970).

    ADS  Google Scholar 

  43. V. L. Ginzburg and V. V. Zheleznyakov, Ann. Rev. Astron. Astrophys. 13, 511 (1975).

    Article  ADS  Google Scholar 

  44. F. Bloch, Phys. Rev. 70, 460 (1946).

    Article  ADS  Google Scholar 

  45. J. H. Eberly, Am. J. Phys. 40, 1374 (1972).

    Article  ADS  Google Scholar 

  46. M. Orszag, J. Phys. A: Math. Gen. 12, 2205 (1979).

    Article  ADS  Google Scholar 

  47. A. Mak, G. Shamuilov, P. Salén, D. Dunning, J. Hebling, Y. Kida, R. Kinjo, B. W. McNeil, T. Tanaka, N. Thompson, et al., Rep. Prog. Phys. 82, 025901 (2019).

    Article  ADS  Google Scholar 

  48. D. J. Dunning, B. W. J. McNeil, and N. R. Thompson, Phys. Rev. Lett. 110, 104801 (2013).

    Article  ADS  Google Scholar 

  49. E. G. Bessonov, Sov. Phys. JETP 53, 433 (1981).

    Google Scholar 

  50. R. M. Arkhipov, M. V. Arkhipov, A. A. Shimko, A. V. Pakhomov, and N. N. Rosanov, JETP Lett. 110, 15 (2019).

    Article  ADS  Google Scholar 

  51. R. M. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, Quantum Electron. 50 (9), 801 (2020).

    Article  ADS  Google Scholar 

  52. X. Chai, X. Ropagnol, S. M. Raeis-Zadeh, M. Reid, S. Safavi-Naeini, and T. Ozaki, Phys. Rev. Lett. 121, 143901 (2018).

    Article  ADS  Google Scholar 

  53. N. N. Rosanov, Opt. Spectrosc. 124, 72 (2018).

    Article  ADS  Google Scholar 

  54. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 44, 1202 (2019).

    Article  ADS  Google Scholar 

  55. N. N. Rosanov and N. V. Vysotina, J. Exp. Theor. Phys. 130, 52 (2020).

    Article  ADS  Google Scholar 

  56. R. Arkhipov, A. Pakhomov, M. Arkhipov, A. Demircan, U. Morgner, N. Rosanov, and I. Babushkin, Opt. Express 28, 17020 (2020).

    Article  ADS  Google Scholar 

  57. R. Arkhipov, A. Pakhomov, M. Arkhipov, I. Babushkin, and N. Rosanov, Las. Phys. Lett. 17, 105301 (2020).

  58. R. M. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, JETP Lett. 111, 484 (2020).

    Article  ADS  Google Scholar 

  59. A. Yariv, Quantum Electronics (Wiley, New York, 1989; Sov. Radio, Moscow, 1980).

  60. N. N. Rosanov, Dissipative Optical Solitons from Micro to Nano and Atto Scales (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  61. J. T. Manassah, Phys. Rev. A 89, 053815 (2014).

    Article  ADS  Google Scholar 

  62. J. T. Manassah, Phys. Lett. A 378, 2085 (2014).

    Article  ADS  Google Scholar 

  63. J. T. Manassah, Phys. Rev. A 90, 065801 (2014).

    Article  ADS  Google Scholar 

  64. S. E. Frish, Optical Spectra of Atoms (Fizmatlit, Moscow, Leningrad, 1963) [in Russian].

    Google Scholar 

  65. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Vl.V. Kocharovskii, E.R. Kocharovskaya, and S.A. Pul’kin for helpful discussions and valuable remarks.

Funding

This work was financially supported by the Russian Science Foundation (project no. 17-19-01097-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Arkhipov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Arkhipov, M.V., Babushkin, I. et al. Generation of an Attosecond Pulse Based on Collective Spontaneous Radiation Emission of a Layer of Three-Level Atoms Excited by a Pair of Unipolar Pulses. Opt. Spectrosc. 128, 1857–1864 (2020). https://doi.org/10.1134/S0030400X20110028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20110028

Keywords:

Navigation