Skip to main content
Log in

Photothermal Effect of Infrared (808 nm) Laser Radiation and Gold Nanoparticles in Different Modifications on S. aureus

  • BIOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A comparative study of the effect of infrared laser radiation (808 nm) of different power density on Staphylococcus aureus 209 P, incubated in solutions of gold nanocubes, nanorods, and on the surface of glasses with coating made of gold nanodisks is performed. Radiation with power density of 60 mW/сm2 combined with nanocubes caused the death of 50% of the population after 30 min of exposure, and combined with nanorods caused the death of 56% of the population. An increase of temperature of suspensions after exposure was noticed not more than by 5–6°С. Radiation with power density of 400 mW/сm2 caused a pronounced inhibition of vitality of bacterial cells by 81% after 30 min. Incubation of suspensions of microorganisms on the surface of glasses, which contain gold nanodisks, in the course of exposure (808 nm, 400 mW/сm2) caused 99% death of bacterial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, Response 9, 602 (2011). https://doi.org/10.2203/dose-response.11-009.Hamblin

    Article  Google Scholar 

  2. R. Yin, T. Agrawa, U. Khan, G. K. Gupta, V. Rai, Y. Y. Huang, and M. R. Hamblin, Nanomedicine (London) 10, 2379 (2015). https://doi.org/10.2217/nnm.15.67

    Article  Google Scholar 

  3. M. R. Hamblin, Curr. Opin. Microbiol. 33, 67 (2016). https://doi.org/10.1016/j.mib.2016.06.008

    Article  Google Scholar 

  4. M. Karimi, P. S. Zangabad, A. Ghasemi, M. Amiri, M. Bahrami, H. Malekzad, H. G. Asl, Z. Mahdieh, M. Bozorgomid, A. Ghasemi, M. Reza, R. T. Boyuk, and M. R. Hamblin, ACS Appl. Mater. Interfaces 8, 21107 (2016). https://doi.org/10.1021/acsami.6b00371

    Article  Google Scholar 

  5. M. Wainwright, T. Maish, S. Nonell, K. Plaetzer, A. Almeida, G. Tegos, and M. R. Hamblin, Lancet Infectious Disease 17, 49 (2017). https://doi.org/10.1016/S1473-3099(16)30268-7

    Article  Google Scholar 

  6. M. R. Hamblin, AIMS Biophys. 4, 337 (2017). https://doi.org/10.3934/biophy.2017.3.337

    Article  Google Scholar 

  7. S. R. Tsai and M. R. Hamblin, J. Photochem. Photobiol. B 170, 197 (2017). https://doi.org/10.1016/j.jphotobiol.2017.04.014

    Article  Google Scholar 

  8. S. Dasari, Y. Zhang, and H. Yu, Biochem. Pharmacol. 4, 199 (2015). https://doi.org/10.4172/2167-0501.1000199

    Article  Google Scholar 

  9. J. Penders, M. Stolzoff, D. J. Hickey, M. Andersson, and T. J. Webster, Int. J. Nanomed. 12, 2457 (2017). https://doi.org/10.2147/IJN.S124442

    Article  Google Scholar 

  10. B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, Nanotechnology 17, 5167 (2006). https://doi.org/10.1088/0957-4484/17/20/022

    Article  ADS  Google Scholar 

  11. E. S. Tuchina, V. V. Tuchin, B. N. Khlebtsov, and N. G. Khlebtsov, Quant. Electron. 41, 354 (2011).

    Article  ADS  Google Scholar 

  12. N. N. Mahmoud, A. M. Alkilany, E. A. Khalil, and A. G. Al-Bakri, Int. J. Nanomed. 12, 7311 (2017).https://doi.org/10.2147/IJN.S145531

    Article  Google Scholar 

  13. M. M. Mohamed, S. A. Fouad, H. A. Elshoky, G. M. Mohammed, and T. A. Salaheldin, Int. J. Veterin. Sci. Med. 5, 23 (2017). https://doi.org/10.1016/j.ijvsm.2017.02.003

    Article  Google Scholar 

  14. L. Mocan, F. A. Tabaran, T. Mocan, T. Pop, O. Mosteanu, L. Agoston-Coldea, C. T. Matea, D. Gonciar, C. Zdrehus, and C. Iancu, Int. J. Nanomed. 12, 2255 (2017). https://doi.org/10.2147/IJN.S124778

    Article  Google Scholar 

  15. V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, and M. A. Iati, J. Phys.: Condens. Matter 29, 3 (2017). https://doi.org/10.1088/1361-648X/aa60f3

    Article  Google Scholar 

  16. E. S. Tuchina, P. O. Petrov, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, Proc. SPIE 9324, 93240X (2015). https://doi.org/10.1117/12.2078687

    Article  ADS  Google Scholar 

  17. S. E. Skrabalak, L. Au, X. Li, and Y. Xia, Nat. Protoc. 2, 2182 (2007). https://doi.org/10.1038/nprot.2007.326

    Article  Google Scholar 

  18. F. Ratto, P. Matteini, S. Centi, F. Rossi, and R. Pini, J. Biophoton. 4, 64 (2011).

  19. M. P. Arnob, F. Zhao, J. Li, and W. C. Shih, ACS Photon. 4, 1870 (2017). https://doi.org/10.1021/acsphotonics.7b00239

  20. C. T. Verrips and R. van Rhee, Appl. Environ. Microbiol. 41, 1128 (1981).

    Article  Google Scholar 

  21. D. Missiakas and O. Schneewind, Curr. Protoc. Microbiol. 9, 1 (2013). https://doi.org/10.1002/9780471729259.mc09c01s28

    Article  Google Scholar 

  22. M. L. Embleton, S. P. Nair, B. D. Cookson, and M. Wilson, Microb. Drug. Resist. 10, 92 (2004). https://doi.org/10.1089/1076629041310000

    Article  Google Scholar 

  23. V. V. Tuchin, Lasers and Fiber Optics in Biomedical R-esearch, 2nd ed. (Fizmatlit, Moscow, 2010), p. 76 [in Russian].

    Google Scholar 

  24. D. N. Williams, S. H. Ehrman, and T. R. P. Holoman, J. Nanobiotechnol. 4, 1 (2006). https://doi.org/10.1186/1477-3155-4-3

  25. W. C. Huang, P. J. Tsai, and Y. C. Chen, Nanomedicine 2, 777 (2007). https://doi.org/10.2217/17435889.2.6.777

    Article  Google Scholar 

  26. W. Kuo, C. N. Chang, Y. T. Chang, and C. S. Yeh, Chem. Commun. 32, 4853 (2009). https://doi.org/10.1039/b907274h

    Article  Google Scholar 

  27. Yu. A. Avetisyan, A. N. Yakunin, and V. V. Tuchin, J. Biomed. Opt. 20, 30 (2015). https://doi.org/10.1117/1.jbo.20.5.051030

    Article  Google Scholar 

  28. A. N. Yakunin, S. V. Zarkov, Yu. A. Avetisyan, G. G. Akchurin, G. G. Akchurin, Jr., E. S. Tuchina, and V. V. Tuchin, Proc. SPIE 4, 1 (2019). https://doi.org/10.1117/12.2531440

    Article  Google Scholar 

  29. L. L. Barboza, V. M. A. Campos, L. A. G. Magalhaes, F. Paoli, and A. S. Fonseca, Braz. J. Med. Biol. Res. 48, 945 (2015). https://doi.org/10.1590/1414-431X20154460

    Article  Google Scholar 

  30. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, J. Biophys. 90, 619 (2006). https://doi.org/10.1529/biophysj.105.061895

    Article  Google Scholar 

  31. C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, van F. W. B. Leeuwen, R. P. H. Kooyman, S. Manohar, and T. G. van Leeuwen, Nano Lett. 11, 1887 (2011).

    Article  ADS  Google Scholar 

  32. L. Gao, R. Liu, F. Gao, Y. Wang, X. Jiang, and X. Gao, ACS Nano 8, 7260 (2014).https://doi.org/10.1021/nn502325j

    Article  Google Scholar 

  33. L. Minai, D. Yeheskely-Hayon, and D. Yelin, Sci. Rep. 1, 2146 (2013). doihttps://doi.org/10.1038/srep02146

    Article  Google Scholar 

  34. A. Raza, U. Hayat, T. Rasheed, M. Bilald, and H. M. N. Iqbale, J. Mater. Res. Technol. 8, 1497 (2019).

    Article  Google Scholar 

  35. M. E. Darvin, I. Gersonde, H. Albrecht, L. Zastrow, W. Sterry, and J. Lademann, Laser Phys. Lett. 4, 318 (2007). https://doi.org/10.1002/lapl.200610113

    Article  ADS  Google Scholar 

  36. M. E. Darvin, M. C. Meinke, W. Sterry, and J. Lademann, J. Biomed. Opt. 18, 061230 (2013). https://doi.org/10.1117/1.JBO.18.6.061230

    Article  ADS  Google Scholar 

  37. E. S. Tuchina, F. Ratto, B. N. Khlebtsov, S. Centi, P. Matteini, F. Rossi, F. Fusi, N. G. Khlebtsov, R. Pini, and V. V. Tuchin, Proc. SPIE 7911, 79111C-1 (2011). https://doi.org/10.1117/12.875122

    Article  ADS  Google Scholar 

  38. B. N. Khlebtsov, E. S. Tuchina, V. V. Tuchin, and N. G. Khlebtsov, RSC Adv. 5, 61639 (2015). https://doi.org/10.1039/C5RA11713E

  39. P. Korshed, L. Li, Z. Lui, A. Mironov, and T. Wang, J. Interdiscipl. Nanomed. 4, 24 (2019). https://doi.org/10.1002/jin2.54

    Article  Google Scholar 

  40. M. Inam, J. C. Foster, J. Gao, Y. Hong, J. Du, A. P. Dove, and R. K. O’Reilly, J. Polym. Sci. Inn. Award Winners 57, 255 (2019). https://doi.org/10.1002/pola.29195

    Article  Google Scholar 

  41. J. Penders, M. Stolzoff, D. J. Hickey, M. Andersson, and T. J. Webster, Int. J. Nanomed. 12, 2457 (2017). https://doi.org/10.2147/IJN.S124442

    Article  Google Scholar 

  42. N. H. Harun, R. B. Mydin, S. Sreekantan, K. A. Saharudin, K. Y. Ling, F. Basiron, F. Radhi, and A. Seeni, Mal. J. Med. Health Sci. 14, 141 (2018).

    Google Scholar 

  43. J. Y. Cheon, S. J. Kim, Y. H. Rhee, O. H. Kwon, and W. H. Park, Int. J. Nanomed. 14, 2773 (2019).

    Article  Google Scholar 

  44. A. G. Al-Bakri and N. N. Mahmoud, Molecules 24, 1 (2019). https://doi.org/10.3390/molecules24142661

    Article  Google Scholar 

  45. N. G. Khlebtsov, L. Li, B. N. Khlebtsov, and J. Ye, Theranostics 10, 2067 (2020). https://doi.org/10.7150/thno.39968

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to staff members of Nanobiotechnology Laboratory at the Institute of Biochemistry and Physiology of Plants and Micro-organisms Russian Academy of Sciences (Saratov, Russia) B.N. Khlebtsov and N.G. Khlebtsov for provided samples of gold nanocubes; staff member of Biophotonics and Nanomedicine Laboratory at the Institute of Applied Physics “Nello Carrara” (Italy) Fulvio Ratto for provided samples of gold nanorods; staff member of University of Houston (USA) Wei-Chuan Shih for provided samples of coatings with gold nanodisks; staff members of Department of Optics and Biophotonics at the Saratov State University (Saratov, Russia) G.G. Ak-churin and L.E. Dolotov for helping with measurements and setting up equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Tuchina.

Ethics declarations

Authors declare that they have no conflict of interest.

Additional information

Translated by D. Churochkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuchina, E.S., Tuchin, V.V. Photothermal Effect of Infrared (808 nm) Laser Radiation and Gold Nanoparticles in Different Modifications on S. aureus. Opt. Spectrosc. 128, 843–848 (2020). https://doi.org/10.1134/S0030400X20060223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20060223

Keywords:

Navigation