Skip to main content
Log in

Luminescent and Photoelectric Properties of Hybrid Structures Based on Multilayer Graphene and 0D and 2D Semiconductor Quantum Nanocrystals

  • NANOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Determination of regular features of mechanisms underlying interactions of nanostructured materials is one of the most important problems on the way to create the new generation of efficient photovoltaic devices. In this paper, we study the luminescent and photoelectric properties of hybrid structures that are formed on the basis of multilayer graphene nanoribbons and semiconductor quantum nanocrystals of the 0D dimension, CdSe/ZnS core/shell quantum dots, and 2D-dimension CdSe nanoplates. It is shown that the multiexponential decay of the exciton luminescence of CdSe nanoplates at room temperature is determined by the occurrence of delayed luminescence, which is caused by the presence of trap states on the surface of nanoplates. It is found that, in dry layers of nanoplates on a dielectric substrate and in the composition of hybrid structures with graphene nanoribbons, the efficiency of delayed exciton luminescence of nanoplates increases. It is shown that the rate of increase in the photoconductivity in hybrid structures based on CdSe nanoplates is an order of magnitude higher than the rate of this process in similar structures based on CdSe/ZnS quantum dots, which indicates the formation of an effective energy/charge transfer channel from nanoplates to graphene nanoribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin, C. R. Kagan, and P. Guyot-Sionnnest, ACS Nano 9, 1012 (2015).

    Article  Google Scholar 

  2. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, Chem. Rev. 110, 389 (2010).

    Article  Google Scholar 

  3. M. Amelia, C. Lincheneau, S. Silvi, and A. Credi, Chem. Soc. Rev. 41, 5728 (2012).

    Article  Google Scholar 

  4. M. Pelton, S. Ithurria, R. D. Schaller, D. S. Dolzhnikov, and D. V. Talapin, Nano Lett. 12, 6158 (2012).

    Article  ADS  Google Scholar 

  5. Z. Chen, B. Nadal, B. Mahler, H. Aubin, and B. Dubertret, Adv. Funct. Mater. 24, 295 (2014).

    Article  Google Scholar 

  6. B. Guzelturk, Y. Kelestemur, M. Olutas, S. Delikanli, and H. V. Demir, ACS Nano 8, 6599 (2014).

    Article  Google Scholar 

  7. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).

    Article  Google Scholar 

  8. S. Ithurria, G. Bousquet, and B. Dubertret, J. Am. Chem. Soc. 133, 3070 (2011).

    Article  Google Scholar 

  9. C. Bouet, B. Mahler, B. Nadal, B. Abecassis, M. D. Tessier, S. Ithurria, and B. Dubertret, Chem. Mater. 25, 639 (2013).

    Article  Google Scholar 

  10. R. F. Kubin and A. N. Fletcher, J. Lumin. 27, 455 (1982).

    Article  Google Scholar 

  11. J. A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, and D. K. Schwartz, Science (Washinton, DC, U. S.) 263 (5154), 1726 (1994).

    Article  ADS  Google Scholar 

  12. M. D. Tessier, C. Javaux, I. Maksimovic, V. Loriette, and B. Dubertret, ACS Nano 6, 6751 (2012).

    Article  Google Scholar 

  13. G. Yuan, D. E. Gómez, N. Kirkwood, K. Boldt, and P. Mulvaney, ACS Nano 12, 3397 (2018).

    Article  Google Scholar 

  14. F. T. Rabouw, M. Kamp, R. J.van Dijk-Moes, D. R. Gamelin, A. F. Koenderink, A. Meijerink, and D. Vanmaekelbergh, Nano Lett. 15, 7718 (2015).

    Article  ADS  Google Scholar 

  15. A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, and Y. Tachibana, Phys. Chem. Chem. Phys. 17, 2850 (2015).

    Article  Google Scholar 

  16. S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B. Dubertret, and A. L. Efros, Nat. Mater. 10, 936 (2011).

    Article  ADS  Google Scholar 

  17. I. A. Reznik, Y. A. Gromova, A. S. Zlatov, M. A. Baranov, A. O. Orlova, S. A. Moshkalev, V. G. Maslov, A. V. Baranov, and A. V. Fedorov, Opt. Spectrosc. 122, 119 (2017).

    Article  ADS  Google Scholar 

  18. Y. A. Gromova, I. A. Reznik, I. A. Vovk, S. Rackauskas, A. V. Alaferdov, A. O. Orlova, S. A. Moshkalev, A. V. Baranov, and A. V. Fedorov, MRS Online Proc. Libr. Arch. 15, 1787 (2015).

    Google Scholar 

  19. E. P. Kolesova, O. Cleary, Y. K. Gun’ko, V. G. Maslov, and A. O. Orlova, J. Phys.: Conf. Ser. 1092, 012057 (2018).

    Google Scholar 

  20. Z. Sun, Z. Liu, J. Li, G. A. Tai, S. P. Lau, and F. Yan, Adv. Mater. 24, 5878 (2012).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation (state assignment no. 2019-1080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Reznik.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reznik, I.A., Zlatov, A.S., Il’in, P.O. et al. Luminescent and Photoelectric Properties of Hybrid Structures Based on Multilayer Graphene and 0D and 2D Semiconductor Quantum Nanocrystals. Opt. Spectrosc. 128, 733–741 (2020). https://doi.org/10.1134/S0030400X2006017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X2006017X

Keywords:

Navigation