Skip to main content
Log in

Nanosized Particles of Tantalum, Hafnium, and Cerium Oxides Used with Monochromatic Photon Beams and Brachytherapy Sources

  • Nanophotonics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

High-Z nanoparticles can increase the absorbed radiation dose if they are accumulated in tumor cells. The quantitative measure of this radiosensitization effect is the dose enhancement factor (DEF), that is, the ratio of the doses absorbed in the presence and in the absence of nanoparticles. In the present work, the values of the dose enhancement factors of Ta2O5, HfO2, and CeO2 ceramic nanoparticles were calculated analytically for monochromatic radiation of the X-ray energy range (1–180 keV) and for low-energy sources for brachytherapy: 103Pd (mean energy, 20.6 keV), 125I (26.7 keV), and 131Cs (30.4 keV). For all types of nanoparticles in the concentration of 5 mg/mL, the values of the dose enhancement factor were high both for monochromatic radiation and for brachytherapy sources. The highest DEF values of ~1.7 were obtained for nanoparticles of tantalum oxide. For brachytherapy sources, the highest dose enhancement factors (1.48 to 1.67) were obtained for Ta2O5 and HfO2 nanoparticles. These results confirm that ceramic nanoparticles are promising dose modifying agents for radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Brigger, C. Dubernet, and P. Couvreur, Adv. Drug. Deliv. Rev. 54, 631 (2002). doi 10.1016/j.addr.2012.09.006

    Article  Google Scholar 

  2. J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, Phys. Med. Biol. 49, 309 (2004). doi 10.1088/0031- 9155/49/18/N03

    Article  Google Scholar 

  3. P. Retif, S. Pinel, M. Toussaint, C. Frochot, R. Chouikrat, T. Bastogne, and M. Barberi-Heyob, Theranostics 5, 1030 (2015). doi 10.7150/thno.11642

    Article  Google Scholar 

  4. S. Her, D. A. Jaffray, and C. Allen, Adv. Drug. Deliv. Rev. 109, 84 (2017). doi 10.1016/j.addr.2015.12.012

    Article  Google Scholar 

  5. R. Brown, M. Tehei, S. Oktaria, A. Briggs, C. Stewart, K. Konstantinov, A. Rosenfeld, S. Corde, and M. Lerch, Part. Part. Syst. Charact. 31, 500 (2014). doi 10.1002/ppsc.201300276

    Article  Google Scholar 

  6. E. Engels, M. Lerch, M. Tehei, K. Konstantinov, S. Guatelli, A. Rosenfeld, and S. Corde, J. Phys.: Conf. Ser. 777 (1) (2017). doi 10.1088/1742-6596/777/1/012011

    Google Scholar 

  7. L. Maggiorella, G. Barouch, C. Devaux, A. Pottier, E. Deutsch, J. Bourhis, E. Borghi, and L. Levy, Future Oncol. 8, 1167 (2012). doi 10.2217/fon.12.96

    Article  Google Scholar 

  8. F. Chen, X. H. Zhang, X. D. Hu, W. Zhang, Z. C. Lou, L. H. Xie, P. D. Liu, and H. Q. Zhang, Int. J. Nanomed. 10, 4957 (2015). doi 10.2147/IJN.S82980

    Article  Google Scholar 

  9. E. Bräuer-Krisch, J. F. Adam, E. Alagoz, S. Bartzsch, J. Crosbie, C. DeWagter, A. Dipuglia, M. Donzelli, S. Doran, P. Fournier, J. Kalef-Ezra, A. Kock, M. Lerch, C. McErlean, U. Oelfke, et al., Phys Med. 31, 568 (2015). doi 10.1016/j.ejmp.2015.04.016

    Article  Google Scholar 

  10. W. N. Rahman, N. Bishara, T. Ackerly, C. F. He, P. Jackson, C. Wong, R. Davidson, and M. Geso, Nanomedicine 5, 136 (2009). doi 10.1016/j.nano.2009.01.014

    Article  Google Scholar 

  11. E. Engels, S. Corde, S. McKinnon, S. Incerti, K. Konstantinov, A. Rosenfeld, M. Tehei, M. Lerch, and S. Guatelli, Phys. Med. 32, 1852 (2016). doi 10.1016/ j.ejmp.2016.10.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Morozov.

Additional information

Original Russian Text © V.N. Morozov, A.V. Belousov, G.A. Krusanov, M.A. Kolyvanova, P.V. Krivoshapkin, V.V. Vinogradov, A.P. Chernyaev, A.A. Shtil, 2018, published in Optika i Spektroskopiya, 2018, Vol. 125, No. 1, pp. 101–104.

The 1st International School–Conference for Young Researchers “Smart Nanosystems for Translation Medicine,” November 28−29, 2017, St. Petersburg, Russia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, V.N., Belousov, A.V., Krusanov, G.A. et al. Nanosized Particles of Tantalum, Hafnium, and Cerium Oxides Used with Monochromatic Photon Beams and Brachytherapy Sources. Opt. Spectrosc. 125, 104–106 (2018). https://doi.org/10.1134/S0030400X18070196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18070196

Navigation