Skip to main content
Log in

Determination of the Disperse Composition of a PbO Suspension Containing Aggregates of Particles of Lamellar Shape by the Laser-Polarimetry Method

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The results of measurements of the scattering matrix at a wavelength of 0.63 μm in the range of scattering angles of 10°–155° are presented for an aqueous suspension of lead oxide containing particles of plate form and their aggregates of monomers with dimensions of ~5 nm. The results of the measurements are compared with the results of calculations for axially symmetric scatterers (ellipsoids of rotation, cylinders). It is shown that the presence of aggregates affects the scattering properties of such a medium. The results of reconstructing the distribution of particles of a disperse medium in sizes from the measurements data of the scattering matrix are presented. The reconstruction of the distributions was carried out by solving the problem of optimizing the sum of the squared deviations of the experimental and calculated values of matrix elements in the framework of the model of axially symmetric scatterers. It is shown that the distribution of particles by sizes is more accurately reconstructed by minimizing the sum of the squares of the deviations for the sum of the diagonal elements. The obtained distribution is compared with the distribution measured by the method of dynamic light scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Xu, Particle Characterization: Light Scattering Methods (Kluwer Academic, New York, 2002).

    Google Scholar 

  2. L. D. Travis and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  3. K. V. Gileev, M. A. Yurkin, G. V. Dyatlov, A. V. Chernyshev, and V. P. Maltsev, J. Quant. Spectrosc. Radiat. Transfer 131, 202 (2013).

    Article  ADS  Google Scholar 

  4. Xiaoyan Liu, Jiu Shen, J. C. Thomas, Shaojian Shi, Xianming Sun, and Wei Liu, Appl. Opt. 51, 846 (2012).

    Article  ADS  Google Scholar 

  5. H. Lindqvist, T. Nousianen, E. Zubko, and O. Munoz, J. Quant. Spectrosc. Radiat. Transfer 112, 1871 (2011).

    Article  ADS  Google Scholar 

  6. E. Zubko, Y. Shkuratov, and G. Videen, J. Quant. Spectrosc. Radiat. Transfer 150, 42 (2015).

    Article  ADS  Google Scholar 

  7. A. B. Milstein and J. Richardson, J. Quant. Spectrosc. Radiat. Transfer 151, 110 (2015).

    Article  ADS  Google Scholar 

  8. T. Nousianen, M. Kahnert, and H. Lindqvist, J. Quant. Spectrosc. Radiat. Transfer 112, 2213 (2011).

    Article  ADS  Google Scholar 

  9. Jiangping Liu, Ping Yang, and K. Muinonen, J. Quant. Spectrosc. Radiat. Transfer 161, 136 (2015).

    Article  ADS  Google Scholar 

  10. Yuli Wang, A. Chakrabarti, and C. M. Sorensen, J. Quant. Spectrosc. Radiat. Transfer 163, 72 (2015).

    Article  ADS  Google Scholar 

  11. E. N. Ezhokin and S. N. Chirikov, Opt. Spectrosc. 109, 613 (2010).

    Article  ADS  Google Scholar 

  12. M. J. Weber, Handbook of Optical Materials (CRC, New York, 2003).

    Google Scholar 

  13. D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963).

    Article  Google Scholar 

  14. Y. Wu, T. Cheng, L. Zheng, and H. Chen, J. Quant. Spectrosc. Radiat. Transfer 168, 158 (2016).

    Article  ADS  Google Scholar 

  15. Y. Wu, X. Gu, T. Cheng, D. Xie, T. Yu, H. Chen, and J. Guo, J. Quant. Spectrosc. Radiat. Transfer 113, 1454 (2012).

    Article  ADS  Google Scholar 

  16. R. Tazaki, H. Tanaka, S. Okuzumi, A. Kataoka, and H. Nomura, Astrophys. J. 823, 70 (2016).

    Article  ADS  Google Scholar 

  17. S. I. Tymper and S. N. Chirikov, Opt. Spectrosc. 118, 460 (2015).

    Article  ADS  Google Scholar 

  18. D. W. Mackowski, J. Quant. Spectrosc. Radiat. Transfer 100, 237 (2006).

    Article  ADS  Google Scholar 

  19. T. L. Farias, U. O. Koylu, and M. G. Carvalho, Appl. Opt. 35, 6560 (1996).

    Article  ADS  Google Scholar 

  20. G. Wang and C. M. Sorensen, Appl. Opt. 41, 4645 (2002).

    Article  ADS  Google Scholar 

  21. C. M. Sorensen, Aerosol Sci. Technol. 35, 648 (2001).

    Article  ADS  Google Scholar 

  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  23. R. Kandilian, Ri-Liang Heng, and L. Pilon, J. Quant. Spectrosc. Radiat. Transfer 151, 310 (2015).

    Article  ADS  Google Scholar 

  24. R. Finsy, Adv. Colloid Interface Sci. 52, 79 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Chirikov.

Additional information

Original Russian Text © S.N. Chirikov, A.V. Shkirin, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 4, pp. 542–550.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirikov, S.N., Shkirin, A.V. Determination of the Disperse Composition of a PbO Suspension Containing Aggregates of Particles of Lamellar Shape by the Laser-Polarimetry Method. Opt. Spectrosc. 124, 575–584 (2018). https://doi.org/10.1134/S0030400X18040057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18040057

Navigation