Skip to main content
Log in

Molecular structure and spectral (FT-IR, Raman) investigations of 3-aminocoumarin

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The molecular structure of 3-Aminocoumarin was determined by conformational analysis. Conformational space was scanned by conformer distribution option of Spartan 08 program package using Merck Molecular Force Field (MMFF) method. Then obtained conformers were optimized by B3LYP/6-311++G(d, p) and B3LYP/6-311G(d, p) levels of Density Functional Theory. As a result of these calculations, only one conformer was determined. Vibrational frequencies of this conformer were calculated by Gaussian 03 program package using the same levels of geometry optimizations. The FT-IR and Raman spectra of 3-Aminocoumarin were recorded and compared with the calculated values. Consequently, a good agreement between experimental and the calculated values were founded. Molecular electrostatic potentials (MEPs), HOMO-LUMO energies, thermodynamic properties and Mulliken atomic charges were also covered in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Musa, J. S. Cooperwood, and M. O. F. Khan, Curr. Med. Chem. 15, 2664 (2008).

    Article  Google Scholar 

  2. R. G. Harvey, C. Cortex, T. P. Ananthanarayan, and S. Schmolka, J. Org. Chem. 53, 3936 (1988).

    Article  Google Scholar 

  3. I. Kostova, S. Raleva, P. Genova, and R. Argirova, Bioinorg. Chem. Appl. 2006, 68274 (2006).

    Google Scholar 

  4. R. S. Moffet, J. Med. Chem. 7, 446 (1964).

    Article  Google Scholar 

  5. M. A. Al-Haiza, M. S. Mostafa, and M. Y. El-Kady, Molecules 8, 275 (2003).

    Article  Google Scholar 

  6. B. Musiciki, A. M. Periers, P. Laurin, D. Ferroud, Y. Benedetti, S. Lachaud, F. Chatreaux, J. L. Haesslein, A. L. Ltis, C. Pierre, J. Khider, N. Tessol, M. Airault, J. Demassey, C. Dupuis-Hamelin, et al., Bioorg. Med. Chem. Lett. 10, 1695 (2000).

    Article  Google Scholar 

  7. K. C. Fylaktakidou, D. J. Hadipavlou-Litina, K. E. Litinas, and D. N. Nicolaides, Curr. Pharm. Des. 10, 3813 (2004).

    Article  Google Scholar 

  8. J. Jung, J. Kin, and O. S. Park, Synth. Commun. 31, 1195 (2001).

    Article  Google Scholar 

  9. Z. Wang, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, H. Arakawa, and H. Sugihara, J. Phys. Chem. B 109, 3907 (2005).

    Article  Google Scholar 

  10. A. A. H. Kadhum, A. B. Mohamad, A. A. Al-Amiery, and M. S. Takriff, Molecules 16, 6969 (2011).

    Article  Google Scholar 

  11. Y. Tianzhi, Z. Peng, Z. Yuling, Z. Hui, M. Jing, and F. Duowang, Org. Electron. 10, 653 (2009).

    Article  Google Scholar 

  12. R. Asish, M. Arunima, and S. Raghunath, Tetrahedron Lett. 51, 1099 (2010).

    Article  Google Scholar 

  13. A. Amit, K. Jamie, C. Chad, D. Natasha, and J. Graham, Tetrahedron Lett. 48, 5077 (2007).

    Article  Google Scholar 

  14. L. D. S. Yadav, S. Singh, and V. K. Rai, Tetrahedron Lett. 50, 2208 (2009).

    Article  Google Scholar 

  15. E. Karakas Sarikaya, Ö. Dereli, Y. Erdogdu, and M. T. Gulluoglu, J. Mol. Struct. 1049, 220 (2013).

    Article  ADS  Google Scholar 

  16. Spartan 08 (Wavefunction Inc., Irvine, CA, 2008).

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, et al., Gaussian 03, Revision E.01 (Gaussian Inc., Pittsburgh, PA, 2003).

    Google Scholar 

  18. T. A. Halgren, J. Comput. Chem. 17, 490 (1996).

    Article  Google Scholar 

  19. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  20. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  21. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  22. J. Baker, A. A. Jarzecki, and P. Pulay, J. Phys. Chem. A 102, 1412 (1988).

    Article  Google Scholar 

  23. SQM version 1.0, Scaled Quantum Mechanical Force Field (Green Acres Road, Fayetteville, Arkansas 72703, 2013).

  24. D. Michalska, RAINT Program (Wroclaw Univ. of Technology, Poland, 2003).

    Google Scholar 

  25. R. Dennington II, T. Keith, J. Millam, K. Eppinnett, W. L. Hovell, and R. Gilliland, Gauss View, Version 4.01 (Semichem, Inc., Shawnee Mission, KS, 2003).

    Google Scholar 

  26. Y. Erdogdu, O. Unsalan, and M. T. Gulluoglu, J. Raman Spectrosc. 41, 820 (2010).

    Google Scholar 

  27. Y. Erdogdu, O. Unsalan, D. Sajan, and M. T. Gulluoglu, Spectrochim. Acta A 76, 130 (2010).

    Article  ADS  Google Scholar 

  28. M. Govindarajan, K. Ganasan, S. Periandy, M. Karabacak, and S. Mohan, Spectrochim. Acta A 77, 1005 (2010).

    Article  ADS  Google Scholar 

  29. M. Govindarajan and M. Karabacak, Spectrochim. Acta A 85, 251 (2012).

    Article  ADS  Google Scholar 

  30. H. Gökce and S. Bahçeli, Spectrochim. Acta A 78, 803 (2011).

    Article  Google Scholar 

  31. H. Gökce and S. Bahçeli, Spectrochim. Acta A 79,1783 (2011).

    Article  Google Scholar 

  32. M. P. Andersson and P. Uvdal, J. Phys. Chem. A 109, 2937 (2005).

    Article  Google Scholar 

  33. E. Karakas Sarikaya and Ö. Dereli, J. Mol. Struct. 1052, 214 (2013).

    Article  ADS  Google Scholar 

  34. E. Karakas Sarikaya and Ö. Dereli, Opt. Spectrosc. (in press).

  35. Ö. Dereli, S. Sudha, and N. Sundaraganesan, J. Mol. Struct. 994, 379 (2011).

    Article  ADS  Google Scholar 

  36. N. P. G. Roeges, Guide to the Complete Interpretation of Infrared Spectra of Organic Structures (Wiley, UK, 1994).

    Google Scholar 

  37. R. M. Silverstein, F. X. Webster, and D. J. Kiemle, Spectrometric Identification of Organic Compounds (Wiley, New York, 2005).

    Google Scholar 

  38. G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives (Academic Kiado, Budapest, 1973), Vols. 1, 2.

    Google Scholar 

  39. M. Jag, Organic Spectroscopy—Principles and Applications, 2nd ed. (Narosa, New Delhi, 2001).

    Google Scholar 

  40. D. Sajan, Y. Erdogdu, R. Reshmy, Ö. Dereli, K. Kurien Thomas, and I. Hubert Joe, Spectrochim. Acta A 82, 118 (2011).

    Article  ADS  Google Scholar 

  41. Y. Erdogdu, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 106, 25 (2013).

    Article  ADS  Google Scholar 

  42. N. Udaya Sri, K. Chaitanya, M. V. S. Prasad, V. Veeraiah, and A. Veeraiah, Spectrochim. Acta A 97, 728 (2012).

    Article  ADS  Google Scholar 

  43. K. Bahgat, Central Eur. J. Chem. 4, 773 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Dereli.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereli, Ö. Molecular structure and spectral (FT-IR, Raman) investigations of 3-aminocoumarin. Opt. Spectrosc. 120, 690–700 (2016). https://doi.org/10.1134/S0030400X16050222

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16050222

Keywords

Navigation