Skip to main content
Log in

Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We have considered an optical model of a porous rough surface with optical properties of objects (bone, flint) that are typical of archeology and paleontology. We have formulated an approach that makes it possible to perform mathematical processing of the IR reflection spectra of objects of this kind using standard algorithms and determine criteria that ensure obtaining reliable information on objects with a rough surface in the course of interpretation of frequencies in their IR reflection spectra. The potential of the approach has been demonstrated using as an example an investigation by the IR Fourier-transform reflection spectroscopy of mineralization processes of mammoth tusks from two paleolithic sites (14000 and 16000 BCE) located by the town of Yudinovo, Bryansk oblast, Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Derrick, D. Stulik, and J. M. Landry Infrared Spectroscopy in Conservation Science (The Getty Conservation Institute, Los Angeles, 1999).

    Google Scholar 

  2. E. Ciliberto and G. N. Y. Spoto, Modern Analytical Methods in Art and Archaeology, Ed. by E. Ciliberto and G. Spoto (Wiley, New York, 2000).

  3. G. Matthaes, The Art Collector’s Illustrated Handbook (Milan, 1997).

    Google Scholar 

  4. P. Vandenabeele, H. G. M. Edwards, and L. Moens, Chem. Rev. 107(3), 677 (2007).

    Article  Google Scholar 

  5. H. G. M. Edwards and M. J. Falk, Appl. Spectrosc. 51, 1134 (1997).

    Article  ADS  Google Scholar 

  6. H. G. M. Edwards, Spectroscopy 17, 16 (2002).

    Google Scholar 

  7. H. G. M. Edwards, D. W. Farwell, D. L. A. de Faria, A. M. F. Monteiro, M. C. Afonso, P. de Blasis, and S. Eggers, J. Raman Spectrosc. 32, 17 (2001).

    Article  ADS  Google Scholar 

  8. M. Igisu, S. Nakashima, Y. Ueno, et al., Appl. Spectrosc. 60(10), 1111 (2006).

    Article  ADS  Google Scholar 

  9. A. Carden and M. D. Morris, J. Biomed. Optics 5, 259 (2000).

    Article  ADS  Google Scholar 

  10. Y. Dauphin, Appl. Spectrosc. 47(1), 52 (1993).

    Article  ADS  Google Scholar 

  11. L. G. Benning, V. R. Phoenix, N. Yee, K. O. Konhauser, and B. W. Mountain, Geochim. Earth Surf. 6, 259 (2002).

    Google Scholar 

  12. N. K. Vincent and G. R. Hunt, Appl. Opt. 7(1), 53 (1968).

    Article  ADS  Google Scholar 

  13. A. Brown, M. Walter, and T. Cudahy, Astrobiology 4(3), 359 (2004).

    Article  ADS  Google Scholar 

  14. M. M. Astaf’eva, L. M. Gerasimenko, A. R. Geptner, et al., Fossil Bacteria and other Microorganisms in Terrestrial Rocks and Astromaterials, Ed. by A. Yu. Rozanov and G. T. Ushatinskaya (PIN RAN, Moscow, 2011) [in Russian].

  15. R. N. Clark, Manual of Remote Sensing, Vol. 3: Remote Sensing for the Earth Sciences, Ed. by A. N. Rencz (Wiley, New York, 1999).

  16. P. R. Griffiths, Fourier Transform Infrared Spectrometry 2nd ed. (Wiley, Hoboken, 2007).

    Book  Google Scholar 

  17. W. W. Wendlant and H. G. Hecht, Reflectance Spectroscopy (Intersience, New York, 1966).

    Google Scholar 

  18. V. A. Kizel’, Reflection of Light (Nauka, Moscow, 1973).

    Google Scholar 

  19. G. Kortum, Reflectance Spectroscopy (Springer-Verlag, Berlin, 1969).

    Book  Google Scholar 

  20. P. Kubelka, Reflectance Spectroscopy (Theory, Methods, Procedures) (Mir, Moscow, 1978) [Russian translation].

    Google Scholar 

  21. R. Shahack-Gross and S. Weiner, J. Archaeol. Sci. 24, 439 (1997).

    Article  Google Scholar 

  22. G. Velraj, K. Prabakaran, A. M. Musthafa, and R. Hemamalini, Recent Res. Sci. Technol. 2(10), 94 (2010).

    Google Scholar 

  23. M. C. Stiner, S. L. Kuhn, S. Weiner, and O. Bar-Yosef, J. Archaeol. Sci. 22, 223 (1995).

    Article  Google Scholar 

  24. L. G. Benning, V. R. Phoenix, N. Yee, and K. O. Konhauser, Geochim. Cosmochim. Acta 68(4), 743 (2004).

    Article  ADS  Google Scholar 

  25. A. Banerjee, G. Bortolaso, and W. Dindorf, Elfenbein und Artenschutz Ivory and Species Conservation INCENTIVS-Tagungsbeitrage der Jahre (2004–2007) Proceedings of INCENTIVS-Meetings (2004–2007), 2008, p. 37.

    Google Scholar 

  26. L. V. Kiseleva, Ezhegodnik—2008, Trudy IGG UrO RAN, No. 156, 312 (2009).

    Google Scholar 

  27. A. Rein, F. Higgins, and Pik Tang Leung, Application Note. Publ., No. 5990-8739EN. Dunbyri, CT, USA: Agilent Technologies Inc., 26 July. 2011.

    Google Scholar 

  28. N. J. Harrick, Am. Lab. News Ed. 39(19), 22 (2007).

    Google Scholar 

  29. Solutions in Optical Spectroscopy (Harrick Scientific Products Inc., Pleasantville, 2011), p. 161.

  30. R. Salzer and H. W. Siesler, Infrared and Raman Spectroscopic Imaging (Wiley, New York, 2009).

    Book  Google Scholar 

  31. M. Marcovic, B. O. Fowler, and M. S. Tung, J. Res. Natl. Inst. Stand. Technol. 109, 553 (2004).

    Article  Google Scholar 

  32. R. N. Clark, G. A. Swayze, R. Wise, et al., USGS Digital Spectral Library splib06a, U.S. Geological Survey, Data Series 231. 2007.

    Google Scholar 

  33. G. Duplain, R. Boulay, and P. A. Belanger, Appl. Opt. 26(20), 4447 (1987).

    Article  ADS  Google Scholar 

  34. V. M. Zolotarev, Opt. Spektrosk. 103, 609 (2007).

    Article  Google Scholar 

  35. W. J. Tropf, Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, San Diego, 1991), Vol. 3, p. 701.

  36. N. N. Rozanov and V. M. Zolotarev, Opt. Spektrosk. 49, 925 (1980).

    Google Scholar 

  37. G. M. Mansurov, N. N. Rozanov, V. M. Zolotarev, and S. M. Sutovskii, Opt. Spektrosk. 53, 301 (1982).

    Google Scholar 

  38. G. A. Khlopachev, Tusk Industries of the Upper Paleolith of the Eastern Europe (Nauka, St. Petersburg, 2006) [in Russian].

    Google Scholar 

  39. Armament Supplies and Objects of Art Made of Bone in Ancient Cultures of the Nothern Eurasia (Technological and Functional Aspects), Ed. by G. A. Khlopachev (Nauka, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  40. G. A. Khlopachev and Yu. N. Gribchenko, Kratk. Soobshch. Instituta Arkheologii RAN, No. 227, 134 (2012).

    Google Scholar 

  41. N. V. Vagenas, A. Gratouli, and C. G. Kontoyannis, Talanta 59, 831 (2003).

    Article  Google Scholar 

  42. B. Wopenka and J. D. Pasteris, Materials Sci. Engin. 25, 131 (2005).

    Article  Google Scholar 

  43. T. Z. Forbes, A. V. Radha, and A. Navrotsky, Geochm. Cosmochim. Acta 75, 7893 (2011).

    Article  ADS  Google Scholar 

  44. F. A. Findersen and L. Brecevic, Acta Chem. Scandinavica 45, 1018 (1991).

    Article  Google Scholar 

  45. J. R. Petit, J. Jouzel, D. Raynaud, et al., Nature 399, 429 (1999).

    Article  ADS  Google Scholar 

  46. D. Hadzi, Pure Appl. Chem. 11, 435 (1965).

    Article  Google Scholar 

  47. G. Turner-Walker, in Advances in Human Palaeopathology, Ed. by R. Pinhasi and S. Mays (Wiley, New York, 2008), pp. 1–29.

  48. H. Mark and J. Workman, Spectroscopy 18(4), 32 (2003).

    Google Scholar 

  49. V. M. Zolotarev, Opt. Spektrosk. 112(1), 150 (2012).

    Article  ADS  Google Scholar 

  50. A. J. Owen, Application Note Publ., No. 5963-3940E, Agilent Technologies Inc., Waldbron, Germany, 1995.

    Google Scholar 

  51. G. T. Ushatinskaya, in Materials of the 4th International Mineralogical, Seminar: Mineralogy and Life. The Origin of Biosphere and Coevolution of Mineral and Biological Worlds, Biomineralogy (Institute of Geology of the Komi NTs UrO RAN, 2007), p. 68.

    Google Scholar 

  52. A. Yu. Rozanov, in Materials of the 4th International Mineralogical, Seminar: Mineralogy and Life. The Origin of Biosphere and Coevolution of Mineral and Biological Worlds, Biomineralogy (Institute of Geology of the Komi NTs UrO RAN, 2007), p. 61.

    Google Scholar 

  53. J. Labs-Hochstein, I. Quitmyer, and D. S. Jones, Palaeogeography, Palaeoclimatology, Palaeoecology 206, 179 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Zolotarev.

Additional information

Original Russian Text © V.M. Zolotarev, G.A. Khlopachev, 2013, published in Optika i Spektroskopiya, 2013, Vol. 114, No. 6, pp. 1036–1050.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolotarev, V.M., Khlopachev, G.A. Particular features of the application of IR reflection spectroscopy methods in studies in archeology and paleontology. Opt. Spectrosc. 114, 946–960 (2013). https://doi.org/10.1134/S0030400X13040231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13040231

Keywords

Navigation