Skip to main content
Log in

Enhancement of electromagnetically induced transparency in room temperature alkali metal vapor

  • Coherent Effects in Optical and Atomic-Molecular Processes
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Electromagnetically induced transparency (EIT) has led to several quantum optics effects such as lasing without inversion or squeezed light generation. More recently quantum memories based on EIT have been experimentally implemented in different systems such as alkali metal atoms. In this system the excited state of the optical transition splits into several sublevels due to the hyperfine interaction. However, most of the theoretical models used to describe the experimental results are based on a Λ-system with only one excited state. In this article, we present a theoretical model for the Λ-type interaction of two light, fields and an atomic system with multiple excited state. In particular we show that if the control and probe fields are orthogonally circularly polarized the EIT effect in an alkali-metal vapor can almost disappears. We also identify the reasons of this reduction and propose a method to recover the transparency via velocity selective optical pumping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fleischhauer and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  2. S. Harris, J. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).

    Article  ADS  Google Scholar 

  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).

    Article  ADS  Google Scholar 

  4. F. A. Beil, M. Buschbeck, G. Heinze, and T. Halfmann, Phys. Rev. A 81, 053801 (2010).

    Article  ADS  Google Scholar 

  5. R.-B. Liu, W. Yao, and L. J. Sham, arXiv:1006.5544v1 (2010).

  6. A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, Phys. Rev. Lett. 102, 195506 (2009).

    Article  ADS  Google Scholar 

  7. K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod. Phys. 82, 1041 (2010).

    Article  ADS  Google Scholar 

  8. A. S. Sheremet, L. V. Gerasimov, I. M. Sokolov, D. V. Kupriyanov, O. S. Mishina, E. Giacobino, and J. Laurat, Phys. Rev. A 82, 033838 (2010).

    Article  ADS  Google Scholar 

  9. K. Li, L. Deng, and M. G. Payne, Appl. Phys. Lett. 95, 221103 (2009).

    Article  ADS  Google Scholar 

  10. O. S. Mishina et al., in preparation.

  11. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, Nature 452, 67 (2008).

    Article  ADS  Google Scholar 

  12. Y. Chen, X. G. Wei, and B. S. Ham, Opt. Express 17, 1781 (2009).

    Article  ADS  Google Scholar 

  13. J. Cviklinski, J. Ortalo, J. Laurat, A. Bramati, M. Pinard, and E. Giacobino, Phys. Rev. Lett. 101, 133601 (2008).

    Article  ADS  Google Scholar 

  14. J. Ortalo, J. Cviklinski, P. Lombardi, J. Laurat, A. Bramati, M. Pinard, and E. Giacobino, J. Phys. B: At. Mol. Opt. Phys. 42, 114010 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishina, O.S., Scherman, M., Lombardi, P. et al. Enhancement of electromagnetically induced transparency in room temperature alkali metal vapor. Opt. Spectrosc. 111, 583–588 (2011). https://doi.org/10.1134/S0030400X1111021X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1111021X

Keywords

Navigation