Skip to main content
Log in

Holographic nanocomposites for recording polymer-nanoparticle periodic structures: I. General approach to choice of components of nanocomposites and their holographic properties

  • Holography
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We studied polymerizable nanocomposites for obtaining polymer-nanoparticle periodic structures by a holographic method. A general approach to choosing components of composites is developed that ensures a maximal contrast and high efficiency of structures for different types of nanoparticles. We found that the optimal monomeric component of a nanocomposite is a combination of single- and multifunctional monomers with substantially different reactivities. In this case, the low-reactivity monomer should posses a low viscosity, be a good solvent for nanoparticles, and have a low thermodynamic affinity to the polymer network formed upon the polymerization of the high-reactivity monomer. We developed a holographic composition based on known commercially produced monomers that ensures the formation of highly efficient periodic structures for nanoparticles of different types. We described the holographic properties of obtained nanocomposites, as well as parameters of bulk gratings recorded in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Henglein, Top. Curr. Chem. 143, 113 (1988).

    Article  Google Scholar 

  2. A. Henglein, Chem. Rev. 89(8), 1861 (1989).

    Article  Google Scholar 

  3. L. E. Brus, J. Chem. Phys. 79, 5566 (1983).

    Article  ADS  Google Scholar 

  4. D. S. Schmitt-Rink, A. B. Miller, and D. S. Chemla, Phys. Rev. B 35(15), 8113 (1987).

    Article  ADS  Google Scholar 

  5. T. N. Smirnova, O. V. Sakhno, V. I. Bezrodnyi, and J. Stumpe, J. Appl. Phys. B 80(8), 947 (2005).

    Article  ADS  Google Scholar 

  6. V. Mikhailov, J. Elliott, G. Wurtz, et al., Phys. Rev. Lett. 99(8), 083901 (2007).

    Article  ADS  Google Scholar 

  7. T. N. Smirnova, O. V. Sakhno, P. V. Yezhov, et al., Nanotecnology 20, 245707 (2009).

    Article  ADS  Google Scholar 

  8. T. N. Smirnova, O. V. Sakhno, J. Stumpe, et al., Nanotecnology (2011).

  9. O. V. Sakhno, T. N. Smirnova, L. M. Goldenberg, and J. Stumpe, Mater. Sci. Engin. C 28(1), 28 (2008).

    Article  Google Scholar 

  10. R. A. Vaia, C. L. Dennis, L. V. Natarajian, et al., Adv. Mater. 13, 1570 (2001).

    Article  Google Scholar 

  11. N. Suzuki, Y. Tomita, and T. Kojima, Appl. Phys. Lett. 81(22), 4121 (2002).

    Article  ADS  Google Scholar 

  12. N. Suzuki and Y. Tomita, Jpn. J. Appl. Phys. 42, 927 (2003).

    Article  ADS  Google Scholar 

  13. Y. Tomita, N. Suzuki, and K. Chikama, Opt. Lett. 30(8), 839 (2005).

    Article  ADS  Google Scholar 

  14. N. Suzuki, Y. Tomita, K. Ohomori, et al., Opt. Express 14(6), 12712 (2006).

    Article  ADS  Google Scholar 

  15. C. Sanchez, M. J. Escuti, C. van Heesch, et al., Adv. Funct. Mater. 15(10), 1623 (2005).

    Article  Google Scholar 

  16. O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, Nanotecnology 18, 105704 (2007).

    Article  ADS  Google Scholar 

  17. G. Garnweitner, L. M. Goldenberg, O. V. Sakhno, et al., Small 3(9), 1626 (2007).

    Article  Google Scholar 

  18. L. M. Goldenberg, O. V. Sakhno, J. Stumpe, T. N. Smirnova, et al., Chem. Mater. 20, 4619 (2008).

    Article  Google Scholar 

  19. W. J. Tomlinson, E. A. Chandross, H. I. Weber, and G. D. Aumiller, Appl. Opt. 15, 534 (1976).

    Article  ADS  Google Scholar 

  20. E. S. Gulnazarov, T. N. Smirnova, and E. A. Tikhonov, Proc. SPIE-Int. Soc. Opt. Eng. 1238, 235 (1989).

    Google Scholar 

  21. T. N. Smirnova, Proc. SPIE-Int. Soc. Opt. Eng. 3733, 364 (1999).

    ADS  Google Scholar 

  22. O. V. Sakhno and T. N. Smirnova, Opt. Spektrosk. 85(6), 1033 (1998).

    Google Scholar 

  23. G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, and V. V. Lemeshko, Opt. Commun. 174(5), 391 (2000).

    Article  ADS  Google Scholar 

  24. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, Ann. Rev. Mater. Sci. 30, 83 (2000).

    Article  ADS  Google Scholar 

  25. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, J. Appl. Phys. 96, 951 (2004).

    Article  ADS  Google Scholar 

  26. D. E. Luchetta, R. Karapinar, A. Manni, and F. Simoni, J. Appl. Phys. 91, 6060 (2002).

    Article  ADS  Google Scholar 

  27. T. N. Smirnova, Ukr. Fiz. Zh. 44(1–2), 93 (1999).

    Google Scholar 

  28. T. Smirnova and O. Sakhno, Semicond. Phys. Quantum Electron. Optoelectron. 7(3), 326 (2004).

    Google Scholar 

  29. W. Caseri, Macromol. Rapid Commun. 21, 705 (2000).

    Article  Google Scholar 

  30. L. Solymar and D. J. Cooke Volume Holography and Volume Gratings (Academic, London, 1981).

    Google Scholar 

  31. H. Kogelnik, Bell Syst. Tech. J. 48(9), 2909 (1969).

    Google Scholar 

  32. N. Suzuki and Y. Tomita, Appl. Opt. 43(10), 2125 (2004).

    Article  ADS  Google Scholar 

  33. H. Takahashi, J. Yamauchi, and Y. Tomita, Jpn. J. Appl. Phys. 44, 1008 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Smirnova.

Additional information

Original Russian Text © T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, J. Stumpe, 2011, published in Optika i Spektroskopiya, 2011, Vol. 110, No. 1, pp. 135–142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, T.N., Kokhtich, L.M., Sakhno, O.V. et al. Holographic nanocomposites for recording polymer-nanoparticle periodic structures: I. General approach to choice of components of nanocomposites and their holographic properties. Opt. Spectrosc. 110, 129–136 (2011). https://doi.org/10.1134/S0030400X11010206

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X11010206

Keywords

Navigation