Skip to main content
Log in

Protein Repeats Show Clade-Specific Volatility in Aves

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Protein repeats are a source of rapid evolutionary and functional novelty. Repeats are crucial in development, neurogenesis, immunity, and disease. Repeat length variability and purity can alter the outcome of a pathway by altering the protein structure and affecting the protein−protein interaction affinity. Such rampant alterations can facilitate species to rapidly adapt to new environments or acquire various morphological/physiological features. With more than 11000 species, the avian clade is one of the most speciose vertebrate clades, with near-ubiquitous distribution globally. Explosive adaptive radiation and functional diversification facilitated the birds to occupy various habitats. High diversity in morphology, physiology, flight pattern, behavior, coloration, and life histories make birds ideal for studying protein repeats’ role in evolutionary novelty. Our results demonstrate a similar repeat diversity and proportion of repeats across all the avian orders considered, implying an essential role of repeats in necessary pathways. We detected positively selected sites (PSS) in the polyQ repeat of RUNX2 in the avian clade; and considerable repeat length contraction in the Psittacopasserae. The repeats show a species-wide bias towards a contraction in Galloanseriformes. Interestingly, we detected the length contrast of polyS repeat in PCDH20 between Galliformes and Anseriformes. We speculate the length variability of serine repeat and its interaction with β-catenin in the Wnt/β-catenin signaling pathway could have facilitated fowls to adapt to their respective environmental conditions. We believe our study emphasizes the role of protein repeats in functional/morphological diversification in birds. We also provide an extensive list of genes with considerable repeat length contrast to further explore the role of length volatility in evolutionary novelty and rapid functional diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Marcotte E.M., Pellegrini M., Yeates T.O., Eisenberg D. 1999. A census of protein repeats. J. Mol. Biol. 293, 151–160.

    Article  CAS  PubMed  Google Scholar 

  2. Andrade M.A., Perez-Iratxeta C., Ponting C.P. 2001. Protein repeats: Structures, functions, and evolution. J. Struct. Biol. 134, 117–131.

    Article  CAS  PubMed  Google Scholar 

  3. Albà M.M., Tompa P., Veitia R.A. 2007. Amino acid repeats and the structure and evolution of proteins. In Gene and Protein Evolution. vol. 3. Basel: Karger, pp. 119–130.

    Google Scholar 

  4. Persi E., Wolf Y.I., Koonin E.V. 2016. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat. Commun. 7, 13570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karlin S., Brocchieri L., Bergman A., Mrázek J., Gentles A.J. 2002. Amino acid runs in eukaryotic proteomes and disease associations. Proc. Natl. Acad. Sci. U. S. A. 99, 333–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toll-Riera M., Radó-Trilla N., Martys F., Albá M.M. 2012. Role of low-complexity sequences in the formation of novel protein coding sequences. Mol. Biol. Evol. 29, 883–886.

    Article  CAS  PubMed  Google Scholar 

  7. Schmitz-Linneweber C., Small I. 2008. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci. 13, 663–670.

    Article  CAS  PubMed  Google Scholar 

  8. Renault L., Nassar N., Vetter I., Becker J., Klebe C., Roth M., Wittinghofer A. 1998. The 1.7  Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature. 392 (6671), 97–101.

    Article  CAS  PubMed  Google Scholar 

  9. Jacobsen S.E., Binkowski K.A., Olszewski N.E. 1996. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 93, 9292–9296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varela M., Diaz-Rosales P., Pereiro P., Forn-Cuní G., Costa M.M., Dios S., Romero A., Figueras A., Novoa B. 2014. Interferon-induced genes of the expanded IFIT family show conserved antiviral activities in non-mammalian species. PLoS One. 9, e100015.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cerveny L., Straskova A., Dankova V., Hartlova A., Ceckova M., Staud F., Stulik J. 2013. Tetratricopeptide repeat motifs in the world of bacterial pathogens: Role in virulence mechanisms. Infect. Immun. 81, 629–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch V.J., Wagner G.P. 2008. Resurrecting the role of transcription factor change in developmental evolution. Evolution. 62, 2131–2154.

    Article  CAS  PubMed  Google Scholar 

  13. Emili A., Greenblatt J., Ingles C.J. 1994. Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Mol. Cell. Biol. 14, 1582–1593.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pelassa I., Corà D., Cesano F., Monje F.J., Montarolo P.G., Fiumara F. 2014. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum. Mol. Genet. 23, 3402–3420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gemayel R., Chavali S., Pougach K., Legendre M., Zhu B., Boeynaems S., van der Zande E., Gevaert K., Rousseau F., Schymkowitz J., Babu M.M., Verstrepen K.J. 2015. Variable glutamine-rich repeats modulate transcription factor activity. Mol. Cell. 59, 615–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fiumara F., Fioriti L., Kandel E.R., Hendrickson W.A. 2010. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. Cell. 143, 1121–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thirunavukkarasu K., Mahajan M., McLarren K.W., Stifani S., Karsenty G. 1998. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfβ. Mol. Cell. Biol. 18, 4197–4208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown L.Y., Brown S.A. 2004. Alanine tracts: The expanding story of human illness and trinucleotide repeats. Trends Genet. 20, 51–58.

    Article  CAS  PubMed  Google Scholar 

  19. Malik I., Kelley C.P., Wang E.T., Todd P.K. 2021. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mularoni L., Guigó R., Albà M.M. 2006. Mutation patterns of amino acid tandem repeats in the human proteome. Genome Biol. 7 (4), R33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wren J.D., Forgacs E., Fondon J.W., 3rd, Pertsemlidis A., Cheng S.Y., Gallardo T., Williams R.S., Shohet R.V., Minna J.D., Garner H.R. 2000. Repeat polymorphisms within gene regions: Phenotypic and evolutionary implications. Am. J. Hum. Genet. 67, 345–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newton A.H., Pask A.J. 2020. Evolution and expansion of the RUNX2 QA repeat corresponds with the emergence of vertebrate complexity. Commun. Biol. 3, 771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. King D.G., Soller M., Kashi Y. 1997. Evolutionary tuning knobs. Endeavour. 21, 36–40.

    Article  Google Scholar 

  24. Hancock J.M., Simon M. 2005. Simple sequence repeats in proteins and their significance for network evolution. Gene. 345, 113–118.

    Article  CAS  PubMed  Google Scholar 

  25. Fondon J.W., Garner H.R. 2004. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci. U. S. A. 101, 18058–18063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mularoni L., Ledda A., Toll-Riera M., Albà M.M. 2010. Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res. 20, 745–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kashi Y., King D.G. 2006. Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 22, 253–259.

    Article  CAS  PubMed  Google Scholar 

  28. Schüler A., Bornberg-Bauer E. 2016. Evolution of protein domain repeats in metazoa. Mol. Biol. Evol. 33, 3170–3182.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Teekas L., Sharma S., Vijay N. 2022. Lineage-specific protein repeat expansions and contractions reveal malleable regions of immune genes. Genes Immun. 23 (7), 218‒234.

    Article  CAS  PubMed  Google Scholar 

  30. Mier P., Alanis-Lobato G., Andrade-Navarro M.A. 2017. Context characterization of amino acid homorepeats using evolution, position, and order. Proteins Struct. Funct. Bioinform. 85, 709–719.

    Article  CAS  Google Scholar 

  31. Schweizer M., Liu Y. 2018. Avian Diversity and Distributions and Their Evolution Through Space and Time. Cham: Springer, pp. 129–145.

    Book  Google Scholar 

  32. de Oliveira T.D., Kretschmer R., Bertocchi N.A., Degrandi T.M., de Oliveira E.H.C., Cioffi M. de B., Garnero A.D.V., Gunski R.J. 2017. Genomic organization of repetitive DNA in woodpeckers (Aves, Piciformes): Implications for karyotype and ZW sex chromosome differentiation. Lustig A.J., Ed. PLoS One. 12, e0169987.

  33. Zhang G., Li C., Li Q., Li B., Larkin D.M., Lee C., Storz J.F., Antunes A., Greenwold M.J., Meredith R.W., Ödeen A., Cui J., Zhou Q., Xu L., Pan H., Wang Z., Jin L., Zhang P., Hu H., Yang W., Hu J., Xiao J., Yang Z., Liu Y., Xie Q., Yu H., Lian J., Wen P., Zhang F., Li H., Zeng Y., Xiong Z., Liu S., Zhou L., Huang Z., An N., Wang J., Zheng Q., Xiong Y., Wang G., Wang B., Wang J., Fan Y., da Fonseca R.R., Alfaro-Núñez A., Schubert M., Orlando L., Mourier T., Howard J.T., Ganapathy G., Pfenning A., Whitney O., Rivas M.V., Hara E., Smith J., Farré M., Narayan J., Slavov G., Romanov M.N., Borges R., Machado J.P., Khan I., Springer M.S., Gatesy J., Hoffmann F.G., Opazo J.C., Håstad O., Sawyer R.H., Kim H., Kim K.W., Kim H.J., Cho S., Li N., Huang Y., Bruford M.W., Zhan X., Dixon A., Bertelsen M.F., Derryberry E., Warren W., Wilson R.K., Li S., Ray D.A., Green R.E., O’Brien S.J., Griffin D., Johnson W.E., Haussler D., Ryder O.A., Willerslev E., Graves G.R., Alström P., Fjeldså J., Mindell D.P., Edwards S.V., Braun E.L., Rahbek C., Burt D.W., Houde P., Zhang Y., Yang H., Wang J.; Avian Genome Consortium; Jarvis E.D., Gilbert M.T., Wang J. 2014. Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 346 (6215), 1311‒1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andrews C.B., Mackenzie S.A., Gregory T.R. 2009. Genome size and wing parameters in passerine birds. Proc. R. Soc. B. 276, 55–61.

    Article  PubMed  Google Scholar 

  35. Schmid M., Nanda I., Guttenbach M., Steinlein C., Hoehn M., Schartl M., Haaf T., Weigend S., Fries R., Buerstedde J.M., Wimmers K., Burt D.W., Smith J., A’Hara S., Law A., Griffin D.K., Bumstead N., Kaufman J., Thomson P.A., Burke T., Groenen M.A., Crooijmans R.P., Vignal A., Fillon V., Morisson M., Pitel F., Tixier-Boichard M., Ladjali-Mohammedi K., Hillel J., Mäki-Tanila A., Cheng H.H., Delany M.E., Burnside J., Mizuno S. 2000. First report on chicken genes and chromosomes 2000. Cytogenet. Cell Genet. 90, 169–218.

    Article  CAS  PubMed  Google Scholar 

  36. Brusatte S.L., O’Connor J.K., Jarvis E.D. 2015. The origin and diversification of birds. Curr. Biol. 25, R888–R898.

    Article  CAS  PubMed  Google Scholar 

  37. Moen D., Morlon H. 2014. From dinosaurs to modern bird diversity: Extending the time scale of adaptive radiation. PLoS Biol. 12, e1001854.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Howe K.L., Achuthan P., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Azov A.G., Bennett R., Bhai J., Billis K., Boddu S., Charkhchi M., Cummins C., Da Rin Fioretto L., Davidson C., Dodiya K., El Houdaigui B., Fatima R., Gall A., Garcia Giron C., Grego T., Guijarro-Clarke C., Haggerty L., Hemrom A., Hourlier T., Izuogu O.G., Juettemann T., Kaikala V., Kay M., Lavidas I., Le T., Lemos D., Gonzalez Martinez J., Marugán J.C., Maurel T., Mc-Mahon A.C., Mohanan S., Moore B., Muffato M., Oheh D.N., Paraschas D., Parker A., Parton A., Prosovetskaia I., Sakthivel M.P., Salam A.I.A., Schmitt B.M., Schuilenburg H., Sheppard D., Steed E., Szpak M., Szuba M., Taylor K., Thormann A., Threadgold G., Walts B., Winterbottom A., Chakiachvili M., Chaubal A., De Silva N., Flint B., Frankish A., Hunt S.E., IIsley G.R., Langridge N., Loveland J.E., Martin F.J., Mudge J.M., Morales J., Perry E., Ruffier M., Tate J., Thybert D., Trevanion S.J., Cunningham F., Yates A.D., Zerbino D.R., Flicek P. 2021. Ensembl 2021. Nucleic Acids Res. 49, D884–D891.

    Article  CAS  PubMed  Google Scholar 

  39. Sayers E.W., Beck J., Brister J.R., Bolton E.E., Canese K., Comeau D.C., Funk K., Ketter A., Kim S., Kimchi A., Kitts P.A., Kuznetsov A., Lathrop S., Lu Z., McGarvey K., Madden T.L., Murphy T.D., O’Leary N., Phan L., Schneider V.A., Thibaud-Nissen F., Trawick B.W., Pruitt K.D., Ostell J. 2020. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 48 (D1), D9‒D16.

    Article  CAS  PubMed  Google Scholar 

  40. Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. 2012. The global diversity of birds in space and time. Nature. 491 (7424), 444−448.

    Article  CAS  PubMed  Google Scholar 

  41. Harrison P.M. 2021. fLPS 2.0: Rapid annotation of compositionally-biased regions in biological sequences. PeerJ. 9, e12363.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Penn O., Privman E., Ashkenazy H., Landan G., Graur D., Pupko T. 2010. GUIDANCE: A web server for assessing alignment confidence scores. Nucleic Acids Res. 38, 23–28.

    Article  Google Scholar 

  43. Edgar R.C. 2004. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinf. 5, 113.

    Article  Google Scholar 

  44. Ge S.X., Jung D., Jung D., Yao R. 2020. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 36, 2628–2629.

    Article  CAS  PubMed  Google Scholar 

  45. Conway J.R., Lex A., Gehlenborg N. 2017. UpSetR: An R package for the visualization of intersecting sets and their properties. Hancock J., Ed. Bioinformatics. 33, 2938–2940.

  46. R Core Team. 2021. R: A Language and Environment for Statistical Computing. https://search.gesis.org/publication/zis-RCoreTeam2021R.

  47. Felsenstein J. 1985. Phylogenies and the comparative method. Am. Soc. Nat. 125, 1–15.

    Google Scholar 

  48. Revell L.J. 2012. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223.

    Article  Google Scholar 

  49. Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  50. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Pa-redes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. 2021. Highly accurate protein structure prediction with AlphaFold. Nature. 596, 583–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goddard T.D., Huang C.C., Meng E.C., Pettersen E.F., Couch G.S., Morris J.H., Ferrin T.E. 2018. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25.

    Article  CAS  PubMed  Google Scholar 

  53. Selvatti A.P., Gonzaga L.P., Russo C.A.M. 2015. A Paleogene origin for crown passerines and the diversification of the Oscines in the New World. Mol. Phylogenet. Evol. 88, 1–15.

    Article  PubMed  Google Scholar 

  54. Ericson P.G.P., Irestedt M., Johansson U.S. 2003. Evolution, biogeography, and patterns of diversification in passerine birds. J. Avian Biol. 34, 3–15.

    Article  Google Scholar 

  55. Vuckovic D., Dawson S., Scheffer D.I., Rantanen T., Morgan A., Di Stazio M., Vozzi D., Nutile T., Concas M.P., Biino G., Nolan L., Bahl A., Loukola A., Viljanen A., Davis A., Ciullo M., Corey D.P., Pirastu M., Gasparini P., Girotto G. 2015. Genome-wide association analysis on normal hearing function identifies PCDH20 and SLC28A3 as candidates for hearing function and loss. Hum. Mol. Genet. 24, 5655–5664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lees A.C., Haskell L., Allinson T., Bezeng S.B., Burfield I.J., Renjifo L.M., Rosenberg K. V, Viswanathan A., Butchart S.H.M. 2022. State of the World’s Birds. Ann-u. Rev. Environ. Resour. 47, 231–260.

    Article  Google Scholar 

  57. Dyke G.J. 2001. The evolutionary radiation of modern birds: Systematics and patterns of diversification. Geol. J. 36, 305–315.

    Article  Google Scholar 

  58. Tobias J.A., Ottenburghs J., Pigot A.L. 2020. Avian diversity: Speciation, macroevolution, and ecological function. Annu. Rev. Ecol. Evol. Syst. 51, 533–560.

    Article  Google Scholar 

  59. Albà M.M., Guigó R. 2004. Comparative analysis of amino acid repeats in rodents and humans. Genome Res. 14, 549–554.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Coletta A., Pinney J.W., Solís D.Y.W., Marsh J., Pettifer S.R., Attwood T.K. 2010. Low-complexity regions within protein sequences have position-dependent roles. BMC Syst. Biol. 4, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Inohara N., Chamaillard M., McDonald C., Nuñez G. 2005. NOD-LRR proteins: Role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355–383.

    Article  CAS  PubMed  Google Scholar 

  62. Meylan E., Tschopp J., Karin M. 2006. Intracellular pattern recognition receptors in the host response. Nature. 442, 39–44.

    Article  CAS  PubMed  Google Scholar 

  63. Cohn M. 2002. The immune system: A weapon of mass destruction invented by evolution to even the odds during the war of the DNAs. Immunol. Rev. 185, 24–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kȩdzierski Ł., Montgomery J., Curtis J., Handman E. 2004. Leucine-rich repeats in host-pathogen interactions. Arch. Immunol. Ther. Exp. (Warsz.). 52, 104–112.

    PubMed  Google Scholar 

  65. Lavoie H., Debeane F., Trinh Q.D., Turcotte J.F., Corbeil-Girard L.P., Dicaire M.J., Saint-Denis A., Pagé M., Rouleau G.A., Brais B. 2003. Polymorphism, shared functions and convergent evolution of genes with sequences coding for polyalanine domains. Hum. Mol. Genet. 12, 2967–2979.

    Article  CAS  PubMed  Google Scholar 

  66. Cocquet J., De Baere E., Caburet S., Veitia R.A. 2003. Compositional biases and polyalanine runs in humans. Genetics. 165, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Caburet S., Demarez A., Moumné L., Fellous M., De Baere E., Veitia R.A. 2004. A recurrent polyalanine expansion in the transcription factor FOXL2 induces extensive nuclear and cytoplasmic protein aggregation. J. Med. Genet. 41, 932–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lynch V.J., Wagner G.P. 2021. Cooption of polyalanine tract into a repressor domain in the mammalian transcription factor HoxA11. J. Exp. Zool., Part B. https://doi.org/10.1002/jez.b.23063

  69. Eldon E., Kooyer S., D’Evelyn D., Duman M., Lawinger P., Botas J., Bellen H. 1994. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development. 120, 885–899.

    Article  CAS  PubMed  Google Scholar 

  70. Kobe B., Deisenhofer J. 1995. Proteins with leucine-rich repeats. Curr. Opin. Struct. Biol. 5, 409–416.

    Article  CAS  PubMed  Google Scholar 

  71. Staahl B.T., Tang J., Wu W., Sun A., Gitler A.D., Yoo A.S., Crabtree G.R. 2013. Kinetic analysis of npBA-F to nBAF switching reveals exchange of SS18 with CREST and integration with neural developmental pathways. J. Neurosci. 33, 10348–10361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hargreaves D.C., Crabtree G.R. 2011. ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms. Cell Res. 21, 396–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chi T. 2004. A BAF-centred view of the immune system. Nat. Rev. Immunol. 4, 965–977.

    Article  CAS  PubMed  Google Scholar 

  74. Chi T.H., Wan M., Zhao K., Taniuchi I., Chen L., Uttman D.R., Crabtree G.R. 2002. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature. 418, 195–199.

    Article  CAS  PubMed  Google Scholar 

  75. Pattenden S.G., Klose R., Karaskov E., Bremner R. 2002. Interferon-γ-induced chromatin remodeling at the CIITA locus is BRG1 dependent. EMBO J. 21, 1978–1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eo S.H., Bininda-Emonds O.R.P., Carroll J.P. 2009. A phylogenetic supertree of the fowls (Galloanserae, Aves). Zool. Scr. 38, 465–481.

    Article  Google Scholar 

  77. Chen C.K., Chuang H.F., Wu S.M., Li W.H. 2019. Feather evolution from precocial to altricial birds. Zool. Stud. 58, e24.

    PubMed  PubMed Central  Google Scholar 

  78. Meiri S., Murali G., Zimin A., Shak L., Itescu Y., Caetano G., Roll U. 2021. Different solutions lead to similar life history traits across the great divides of the amniote tree of life. J. Biol. Res. 28, 3.

    Google Scholar 

  79. Rennert J., Coffman J.A., Mushegian A.R., Robertson A.J. 2003. The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. BMC Evol. Biol. 3, 1–11.

    Article  Google Scholar 

  80. Mevel R., Draper J.E., Lie-a-Ling M., Kouskoff V., Lacaud G. 2019. RUNX transcription factors: Orchestrators of development. Development. 146 (17), dev148296.

    Article  PubMed  Google Scholar 

  81. Galant R., Carroll S.B. 2002. Evolution of a transcriptional repression domain in an insect Hox protein. Nature. 415, 910–913.

    Article  CAS  PubMed  Google Scholar 

  82. Gerber H., Seipel K., Georgiev O., Höfferer M., Hug M., Rusconi S., Schaffner W. 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 263, 808–811.

    Article  CAS  PubMed  Google Scholar 

  83. Redies C., Vanhalst K., van Roy F. 2005. δ-Protocadherins: Unique structures and functions. Cell. Mol. Life Sci. 62, 2840–2852.

    Article  CAS  PubMed  Google Scholar 

  84. Ren D., Zhu X., Kong R., Zhao Z., Sheng J., Wang J., Xu X., Liu J., Cui K., Zhang X.H., Zhao H., Wong S.T.C. 2018. Targeting brain-adaptive cancer stem cells prohibits brain metastatic colonization of triple-negative breast cancer. Cancer Res. 78, 2052–2064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang X., Chen M.W., Terry S., Vacherot F., Chopin D.K., Bemis D.L., Kitajewski J., Benson M.C., Guo Y., Buttyan R. 2005. A human- and male-specific protocadherin that acts through the Wnt signaling pathway to induce neuroendocrine transdifferentiation of prostate cancer cells. Cancer Res. 65, 5263–5271.

    Article  CAS  PubMed  Google Scholar 

  86. Pancho A., Aerts T., Mitsogiannis M.D., Seuntjens E. 2020. Protocadherins at the crossroad of signaling pathways. Front. Mol. Neurosci. 13, 117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rose A., Meier I. 2004. Scaffolds, levers, rods and springs: Diverse cellular functions of long coiled-coil proteins. Cell. Mol. Life Sci. 61, 1996–2009.

    Article  CAS  PubMed  Google Scholar 

  88. Wu Y., Zheng S., Yao J., Li M., Yang G., Zhang N., Zhang S., Zhong B. 2017. Decreased expression of protocadherin 20 is associated with poor prognosis in hepatocellular carcinoma. Oncotarget. 8, 3018–3028.

    Article  PubMed  Google Scholar 

  89. Gong Z., Hu G. 2019. PCDH20 acts as a tumour-suppressor gene through the Wnt/β-catenin signalling pathway in hypopharyngeal squamous cell carcinoma. Cancer Biomarkers. 26, 209–217.

    Article  CAS  PubMed  Google Scholar 

  90. Lv J., Zhu P., Yang Z., Li M., Zhang X., Cheng J., Chen X., Lu F. 2015. PCDH20 functions as a tumour-suppressor gene through antagonizing the Wnt/β-catenin signalling pathway in hepatocellular carcinoma. J. Viral Hepatitis. 22, 201–211.

    Article  CAS  Google Scholar 

  91. Carraro R.S., Nogueira G.A., Sidarta-Oliveira D., Gaspar R.S., Dragano N.R., Morari J., Bobbo V.C.D., Araujo E.P., Mendes N.F., Zanesco A.M., Tobar N., Ramos C.D., Toscaro J.M., Bajgelman M.C., Velloso L.A. 2021. Arcuate nucleus overexpression of NHLH2 reduces body mass and attenuates obesity-associated anxiety/depression-like behavior. J. Neurosci. 41, 10004–10022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vella K.R., Good D.J. 2010. Nhlh2 is a cold-responsive gene. Open Neuroendocrinol. J. 3, 38–44.

    CAS  Google Scholar 

  93. Good D.J., Porter F.D., Mahon K.A., Parlow A.F., Westphal H., Kirsch I.R. 1997. Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nat. Genet. 15, 397–401.

    Article  CAS  PubMed  Google Scholar 

  94. Johnson S.A., Marín-Bivens C.L., Miele M., Coyle C.A., Fissore R., Good D.J. 2004. The Nhlh2 transcription factor is required for female sexual behavior and reproductive longevity. Horm. Behav. 46, 420–427.

    Article  CAS  PubMed  Google Scholar 

  95. Tremblay L.O., Herscovics A. 2000. Characterization of a cDNA encoding a novel human Golgi α1,2-mannosidase (IC) involved in N-glycan biosynthesis. J. Biol. Chem. 275, 31655–31660.

    Article  CAS  PubMed  Google Scholar 

  96. Gonzalez-Andrades M., Jalimarada S.S., Rodriguez-Benavente M., Feeley M.N., Woodward A.M., AbuSamra D.B., Argüeso P. 2020. Golgi α1,2-mannosidase I induces clustering and compartmentalization of CD147 during epithelial cell migration. Cell Adhes. Migr. 14, 96–105.

    Article  CAS  Google Scholar 

  97. Li H., Wang G., Yu Y., Jian W., Zhang D., Wang Y., Wang T., Meng Y., Yuan C., Zhang C. 2018. α-1,2-mannosidase MAN1C1 inhibits proliferation and invasion of clear cell renal cell carcinoma. J. Cancer. 9, 4618–4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tu H.C., Hsiao Y.C., Yang W.Y., Tsai S.L., Lin H.K., Liao C.Y., Lu J.W., Chou Y.T., Wang H.D., Yuh C.H. 2017. Up-regulation of golgi α-mannosidase IA and down-regulation of golgi α-mannosidase IC activates unfolded protein response during hepatocarcinogenesis. Hepatol. Commun. 1, 230–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Taniguchi N., Honke K., Fukuda M., Narimatsu H., Yamaguchi Y., Angata T. 2014. Handbook of Glycosyltransferases and Related Genes, vols. 1–2. Taniguchi N., Honke K., Fukuda M., Narimatsu H., Yamaguchi Y., Angata T., Eds. Tokyo: Springer.

    Book  Google Scholar 

  100. Mast S.W., Diekman K., Karaveg K., Davis A., Sifers R.N., Moremen K.W. 2005. Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology. 15, 421–436.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We thank the Ministry of Human Resource Development for fellowship to LT and SS. Computational analyses were done on the Har Gobind Khorana Computational Biology cluster established and maintained by combining funds from the Indian Institute os Science Education and Research Bhopal under Grant # INST/BIO/2017/019, IYBA 2018 from the Department of Biotechnology (Grant no. BT/11/IYBA/2018/03), and ECRA from Science and Engineering Research Board (Grant no. ECR/2017/001430).

Author information

Authors and Affiliations

Authors

Contributions

SS and LT wrote the manuscript with NV. SS and LT analyzed the data and generated the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to N. Vijay.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Teekas, L. & Vijay, N. Protein Repeats Show Clade-Specific Volatility in Aves. Mol Biol 57, 1199–1211 (2023). https://doi.org/10.1134/S0026893324010163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010163

Keywords:

Navigation