Skip to main content
Log in

Improvement of Crops Using the CRISPR/Cas System: New Target Genes

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The success of genome editing of crops using the CRISPR/Cas system largely depends on the correct choice of target genes, for which directed changes will increase yield and improve the quality of plant raw materials and resistance to biotic and abiotic stress factors. This work systematizes and catalogs data on target genes used to improve cultivated plants. The latest systematic review examined articles indexed in the Scopus database and published before August 17, 2019. Our work covers the period from August 18, 2019 to March 15, 2022. A search according to the given algorithm allowed us to identify 2090 articles, among which only 685 contain the results of gene editing of 28 species of cultivated plants (the search was carried out for 56 crops). A significant part of these papers considered either editing of target genes, which was previously carried out in similar works, or studies related to the field of reverse genetics, and only 136 articles contain data on editing of new target genes, whose modification is aimed at improving plant traits important for breeding. In total, 287 target genes of cultivated plants were subjected to editing in order to improve properties significant for breeding over the entire period of the CRISPR/Cas system application. This review presents a detailed analysis of the editing of new target genes. The studies were most often aimed at increasing productivity and disease resistance, as well as improving the properties of plant materials. It was noted whether it was possible to obtain stable transformants at the time of publication and whether editing was applied to nonmodel cultivars. The range of modified cultivars of a number of crops has been significantly expanded, in particular, for wheat, rice, soybean, tomato, potato, rapeseed, grape, and maize. In the vast majority of cases, editing constructs were delivered using agrobacterium-mediated transformation, less commonly, using biolistics, protoplast transfection, and haploinducers. The desired change in traits was most often achieved by gene knockout. In some cases, knockdown and nucleotide substitutions in the target gene were carried out. To obtain nucleotide substitutions in the genes of cultivated plants, base-editing and prime-editing technologies are increasingly used. The emergence of a convenient CRISPR/Cas editing system has contributed to the development of specific molecular genetics of many crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. 2017. Crop genes modified using the CRISPR/Cas system. Russ. J. Genet. 7 (8), 822–832. https://doi.org/10.1134/S2079059717050124

    Article  CAS  Google Scholar 

  2. Korotkova A.M., Gerasimova S.V., Khlestkina E.K. 2019. Current achievements in modifying crop genes using CRISPR/Cas system. Vavilov Zh. Genet. Sel. 23 (1), 29‒37.https://doi.org/10.18699/VJ19.458

  3. Zegeye W.A., Chen D., Islam M., Wang H., Riaz A., Rani M.H., Hussain K., Liu Q., Zhan X., Cheng S., Cao L., Zhang Y. 2022. OsFBK4, a novel GA insensitive gene positively regulates plant height in rice (Oryza sativa L.). Ecol. Genet. Genom. 23. 100115. https://doi.org/10.1016/j.egg.2022.100115

    Article  CAS  Google Scholar 

  4. Wu Q., Liu Y., Huang J. 2022. CRISPR-Cas9 mediated mutation in OsPUB43 improves grain length and weight in rice by promoting cell proliferation in spikelet hull. Int. J. Mol. Sci. 23 (4). 2347. https://doi.org/10.3390/ijms23042347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim C.Y., Park J.Y., Choi G., Kim S., Vo K.T.X., Jeon J.S., Kang S., Lee Y.H. 2022. A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Mol. Plant Pathol. 23 (3), 400–416. https://doi.org/10.1111/mpp.13167

    Article  CAS  PubMed  Google Scholar 

  6. Li B., Du X., Fei Y., Wang F., Xu Y., LI X., Li W., Chen Z., Fan F., Wang J., Tao Y., Jiang Y., Zhu Q.‑H., Yang J. 2021. Efficient breeding of early-maturing rice cultivar by editing PHYC via CRISPR/Cas9. Rice. 14, 86. https://doi.org/10.1186/s12284-021-00527-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu J., Huang L., Chen G., Liu H., Zhang Y., Zhang R., Zhang S., Liu J., Hu Q., Hu F., Wang W., Ding Y. 2021. The elite alleles of OsSPL4 regulate grain size and increase grain yield in rice. Rice. 14, 90. https://doi.org/10.1186/s12284-021-00531-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duy P.N., Lan D.T., Thu H.P., Thanh H.N., Pham N.P., Auguy F., Thi B.T.H., Manh T.B., Cunnac S., Pham X.H. 2021. Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter. PLoS One. 16 (9), e0255470. https://doi.org/10.1371/journal.pone.0255470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dong S., Dong X., Han X., Zhang F., Zhu Y., Xin X., Wang Y., Hu Y., Yuan D., Wang J., Huang Z., Niu F., Hu Z., Yan P., Cao L., He H., Fu J., Xin Y., Tan Y., Mao B., Zhao B., Yang J., Yuan L., Luo X. 2021. OsP-DCD5 negatively regulates plant architecture and grain yield in rice. Proc. Natl. Acad. Sci. U. S. A. 118 (29), e2018799118. https://doi.org/10.1073/pnas.2018799118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nurhayati, Ardie S.W., Santoso T.J., Sudarsono. 2021. CRISPR/Cas9-mediated genome editing in rice cv. IPB3S results in a semi-dwarf phenotypic mutant. Biodiversitas J. Biol. Diversity. 22 (9), 3792–3800. https://doi.org/10.13057/biodiv/d220924

    Article  Google Scholar 

  11. Tao H., Shi X., He F., Wang D., Xiao N., Fang H., Wang R., Zhang F., Wang M., Li A., Liu X., Wang G.L., Ning Y. 2021. Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes. J. Integr. Plant Biol. 63 (9), 1639–1648. https://doi.org/10.1111/jipb.13145

    Article  CAS  PubMed  Google Scholar 

  12. Nawaz G., Usman B., Peng H., Zhao N., Yuan R., Liu Y., Li R. 2020. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line. Genes. 11, 735. https://doi.org/10.3390/genes11070735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng S., Ye C., Lu J., Liufu J., Lin L., Dong Z., Li J., Zhuang C. 2021. Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system. Int. J. Mol. Sci. 22, 9554. https://doi.org/10.3390/ijms22179554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeng Y., Wen J., Zhao W., Wang Q., Huang W. 2020. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB-30 with the CRISPR–Cas9 system. Front. Plant Sci. 10. 1663. https://doi.org/10.3389/fpls.2019.01663

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu M., Liu H., Lin Y., Chen J., Fu Y., Luo J., Zhang Z., Liang K., Chen S., Wang F. 2020. In-frame and frame-shift editing of the Ehd1 gene to develop japonica rice with prolonged basic vegetative growth periods. Front. Plant Sci. 11, 307. https://doi.org/10.3389/fpls.2020.00307

    Article  PubMed  PubMed Central  Google Scholar 

  16. Honma Y., Adhikari P.B., Kuwata K., Kagenishi T., Yokawa K., Notaguchi M., Kurotani K., Toda E., Bessho-Uehara K., Liu X., Zhu S., Wu X., Kasahara R.D. 2020. High-quality sugar production by osgcs1 rice. Commun. Biol. 3, 617. https://doi.org/10.1038/s42003-020-01329-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Usman B., Nawaz G., Zhao N., Liu Y., Li R. 2020. Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations. Plants. 9, 788. https://doi.org/10.3390/plants9060788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang G., Wang C., Lu G., Wang W., Mao G., Habben J.E., Song C., Wang J., Chen J., Gao Y., Liu J., Greene T.W. 2020. Knockouts of a late flowering gene via CRISPR–Cas9 confer early maturity in rice at multiple field locations. Plant. Mol. Biol. 104, 137–150. https://doi.org/10.1007/s11103-020-01031-w

    Article  CAS  PubMed  Google Scholar 

  19. Zhang A., Liu Y., Wang F., Li T., Chen Z., Kong D., Bi J., Zhang F., Luo X., Wang J., Tang J., Yu X., Liu G., Luo L. 2019. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR-22 gene. Mol. Breed. 39 (3), 47. https://doi.org/10.1007/s11032-019-0954-y

    Article  CAS  PubMed  Google Scholar 

  20. Kim Y.A., Moon H., Park C.J. 2019. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice. 12, 67. https://doi.org/10.1186/s12284-019-0325-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hu X., Cui Y., Dong G., Feng A., Wang D., Zhao C., Zhang Y., Hu J., Zeng D., Guo L., Qian Q. 2019. Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Sci. Rep. 9, 19096. https://doi.org/10.1038/s41598-019-55757-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Q., Ding J., Feng X., Zhong X., Lan J., Tang H., Harwood W., Li Z., Guzmán C., Xu Q., Zhang Y., Jiang Y., Qi P., Deng M., Ma J., Wang J., Chen G., Lan X., Wei Y., Zheng Y., Jiang Q. 2022. Editing of the starch synthase IIa gene led to transcriptomic and metabolomic changes and high amylose starch in barley. Carbohydrate Polymers. 285, 119238. https://doi.org/10.1016/j.carbpol.2022.119238

    Article  CAS  PubMed  Google Scholar 

  23. Galli M., Martiny E., Imani J., Kumar N., Koch A., Steinbrenner J., Kogel K.H. 2022. CRISPR/SpCas9-mediated double knockout of barley microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. Plant Biotechnol. J. 20 (1), 89–102. https://doi.org/10.1111/pbi.13697

    Article  CAS  PubMed  Google Scholar 

  24. Lee J.H., Won H.J., Tran P.H.N., Lee S.-Mi, Je H.-Y.K., Jung H. 2021. Improving lignocellulosic biofuel production by CRISPR/Cas9-mediated lignin modification in barley. GCB Bioenergy. 13, 742–752. https://doi.org/10.1111/gcbb.12808

    Article  CAS  Google Scholar 

  25. Gerasimova S.V., Hertig C., Korotkova A.M., Kolosovskaya E.V., Otto I., Hiekel S., Kochetov A.V., Khle-stkina E.K., Kumlehn J. 2020. Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene. BMC Plant Biol. 20, 255. https://doi.org/10.1186/s12870-020-02454-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerasimova S.V., Korotkova A.M., Hertig C., Hiekel S., Hoffie R., Budhagatapalli N., Otto I., Hensel G., Shumny V.K., Kochetov A.V., Kumlehn J., Khlestkina E.K. 2018. Targeted genome modification in protoplasts of a highly regenerable Siberian barley cultivar using RNA-guided Cas9 endonuclease. Vavilov. Zh. Genet. Sel. 22 (8), 1033–1039. https://doi.org/10.18699/VJ18.447

    Article  Google Scholar 

  27. Holubova K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. 2018. Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant. Sci. 9, 1676. https://doi.org/10.3389/fpls.2018.01676

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gasparis S., Przyborowski M., Kała M., Nadolska-Orczyk A. 2019. Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cells. 8 (8), 782. https://doi.org/10.3390/cells8080782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ibrahim S., Saleem B., Rehman N., Zafar A.S., Naeem M.K., Khan M.R. 2021. CRISPR/Cas9 mediated disruption of inositol pentakisphosphate 2-kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J. Adv. Res. 1–9. https://doi.org/10.1016/j.jare.2021.07.006

  30. Guo M., Wang Q., Zong Y., Nian J., Li H., Li J., Wang T., Gao C., Zuo J. 2021. Genetic manipulations of TaARE1 boost nitrogen utilization and grain yield in wheat. J. Genet. Genomics. 48 (10), 950‒953. https://doi.org/10.1016/j.jgg.2021.07.003

    Article  CAS  PubMed  Google Scholar 

  31. Zhang S., Zhang R., Gao J., Gu T., Song G., Li W., Li D., Li Y., Li G. 2019. Highly efficient and heritable targeted mutagenesis in wheat via the Agrobacterium tumefaciens-mediated CRISPR/Cas9 system. Int. J. Mol. Sci. 20 (17), 4257. https://doi.org/10.3390/ijms20174257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raffan S., Sparks C., Huttly A., Hyde L., Martignago D., Mead A., Hanley S.J., Wilkinson P.A., Barker G., Edwards K.J., Curtis T.Y., Usher S., Kosik O., Halford N.G. 2021. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnol. J. 19 (8), 1602–1613. https://doi.org/10.1111/pbi.13573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hahn F., Loures S.L., Sparks C.A., Kanyuka K., Nekrasov V. 2021. Efficient CRISPR/Cas-mediated targeted mutagenesis in spring and winter wheat varieties. Plants. 10, 1481. https://doi.org/10.3390/plants10071481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li J., Jiao G., Sun Y., Chen J., Zhong Y., Yan L., Jiang D., Ma., Xia, L. 2021. Modification of starch composition, structure and properties through editing of TaSBEI-Ia in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol. J. 19, 937–951. https://doi.org/10.1111/pbi.13519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang H., Liu H., Zhou Y., Liu H., Du L., Wang K., Ye X. 2020. Fertility recovery of wheat male sterility controlled by Ms2 using CRISPR/Cas9. Plant Biotechnol. J. 19 (2), 224‒226. https://doi.org/10.1111/pbi.13482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Budhagatapalli N., Halbach T., Hiekel S., Büchner H., Müller A.E., Kumlehn J. 2020. Site-directed mutagenesis in bread and durum wheat via pollination by Cas9/guide RNA-transgenic maize used as haploidy inducer. Plant Biotechnol. J. 18 (12), 2376–2378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang W., Pan Q., Tian B., He F., Chen Y., Bai G., Akhunov E. 2019. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J. 100, 251‒264. https://doi.org/10.1111/tpj.14440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abe F., Haque E., Hisano H., TanakaT., Kamiya Y., Mikami M., Sato K. 2019. Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Rep. 28 (5), 1362–1369. e4. https://doi.org/10.1016/j.celrep.2019.06.090

  39. Zhang Z., Hua L., Gupta A., Tricoli D., Edwards K.J., Yang B., Li W. 2019. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. J. 17, 1623‒1635. https://doi.org/10.1111/pbi.13088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brauer E.K., Balcerzak M., Rocheleau H., Leung W., Schernthaner J., Subramaniam R., Ouellet T. 2020. Genome editing of a deoxynivalenol-induced transcription factor confers resistance to fusarium graminearum in wheat. Mol. Plant Microbe Interact. 33 (3), 553–560. https://doi.org/10.1094/MPMI-11-19-0332-R

    Article  CAS  PubMed  Google Scholar 

  41. Camerlengo F., Frittelli A., Sparks C., Doherty A., Martignago D., Larre C., Lupi R., Sestili F., Masci S. 2020. CRISPR-Cas9 multiplex editing of the α-amylase/trypsin inhibitor genes to reduce allergen proteins in durum wheat. Front. Sustain. Food Syst. 4, 104. https://doi.org/10.3389/fsufs.2020.00104

    Article  Google Scholar 

  42. Guan H., Chen X., Wang K., Liu X., Zhang D., Li Y., Song Y., Shi Y., Wang T., Li C., Li Y. 2022. Genetic variation in ZmPAT7 contributes to tassel branch number in maize. Int. J. Mol. Sci. 23 (5), 2586. https://doi.org/10.3390/ijms23052586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Y., Lin Z., Yue Y. Zhao H., Fei X., Lizhu E., Liu C., Chen S., Lai J., Song  W. 2021. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nat. Plants. 7, 1579–1588. https://doi.org/10.1038/s41477-021-01037-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y., Liu X., Zheng X., Wang W., Yin X., Liu H., Ma C., Niu X., Zhu J.K., Wang F. 2021. Creation of aromatic maize by CRISPR/Cas. J. Integr. Plant. Biol. 63 (9), 1664‒1670. https://doi.org/10.1111/jipb.13105

    Article  CAS  PubMed  Google Scholar 

  45. Gao L., Yang G., Li Y., Sun Y., Xu R., Chen Y., Wang Z., Xing J., Zhang Y. 2021. A Kelch-repeat superfamily gene, ZmNL4, controls leaf width in maize (Zea mays L.). Plant J. 107 (3), 817‒830. https://doi.org/10.1111/tpj.15348

    Article  CAS  PubMed  Google Scholar 

  46. Liu L., Gallagher J., Arevalo E.D., Chen R., Skopelitis T., Wu Q., Bartlett M., Jackson D. 2021. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants. 7 (3), 287‒294. https://doi.org/10.1038/s41477-021-00858-5

    Article  CAS  PubMed  Google Scholar 

  47. Li Q., Wu G., Zhao Y., Wang B., Zhao B., Kong D., Wei H., Chen C., Wang H. 2020. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnol. J. 18 (12), 2520‒2532. https://doi.org/10.1111/pbi.13429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jiang Y.Y., Chai Y.P., Lu M.H., Han X.L., Lin Q., Zhang Y., Zhang Q., Zhou Y., Wang X.C., Gao C., Chen Q.J. 2020. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 21 (1), 257. https://doi.org/10.1186/s13059-020-02170-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Y., Zhu J., Wu H., Liu C., Huang C., Lan J., Zhao Y., Xie C. 2020. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. Crop J. 8, 449‒456. https://doi.org/10.1016/j.cj.2019.10.001

    Article  Google Scholar 

  50. Qi X., Wu H., Jiang H., Zhu J., Huang C., Zhang X., Liu C., Cheng B. 2020. Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. Crop J. 8, 440‒448. https://doi.org/10.1016/j.cj.2020.01.006

    Article  Google Scholar 

  51. Zhao X., Jayarathna S., Turesson H., Fält A., Nestor G., González M.N., Olsson N., Beganovic M., Hofvander P., Andersson R., Andersson M. 2021. Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato. Sci. Rep. 11, 4311. https://doi.org/10.1038/s41598-021-83462-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tuncel A., Corbin K.R., Ahn-Jarvis J., Harris S., Hawkins E., Smedley M.A., Harwood W., Warren F.J., Patron N.J., Smith A.M. 2019. Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol. J. 17, 2259‒2271. https://doi.org/10.1111/pbi.13137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takeuchi A., Ohnuma M., Teramura H., Asano K., Noda T., Kusano H., Tamura K., Shimada H. 2021. Creation of a potato mutant lacking the starch branching enzyme gene StSBE3 that was generated by genome editing using the CRISPR/dMac3-Cas9 system. Plant Biotechnol. (Tokyo). 38 (3), 345‒353. https://doi.org/10.5511/plantbiotechnology.21.0727a

    Article  CAS  Google Scholar 

  54. Zheng Z., Ye G., Zhou Y., Pu X., Su W., Wang J. 2021. Editing sterol side chain reductase 2 gene (StSSR2) via CRISPR/Cas9 reduces the total steroidal glycoalkaloids in potato. All Life. 14 (1), 401‒413. https://doi.org/10.1080/26895293.2021.1925358

    Article  CAS  Google Scholar 

  55. Gonzalez M.N., Massa G.A., Andersson M., Turesson H., Olsson N., Fält A.-S., Storani L., Oneto D.C.A., Hofvander P., Feingold S.E. 2020. Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Front. Plant Sci. 10, 1649. https://doi.org/10.3389/fpls.2019.01649

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kieu N.P., Lenman M., Wang E.S., Petersen B.L., Andreasson E. 2021. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci. Rep. 11 (1), 4487. https://doi.org/10.1038/s41598-021-83972-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Osakabe Y., Liang Z., Ren C., Nishitani C., Osakabe K., Wada M., Komori S., Malnoy M., Velasco R., Poli M., Jung M.-H., Koo O.-J., Viola R., Kanchiswamy C.N. 2018. CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat. Protoc. 13 (12), 2844‒2863. https://doi.org/10.1038/s41596-018-0067-9

    Article  CAS  PubMed  Google Scholar 

  58. Scintilla S., Salvagnin U., Giacomelli L., Zeilmaker T., Malnoy M.A., van der Voort J.R., Moser C. 2021. Regeneration of plants from DNA-free edited grapevine protoplasts.https://doi.org/10.1101/2021.07.16.452503

  59. Olivares F., Loyola R., Olmedo B., Miccono M.D.L.Á., Aguirre C., Vergara R., Riquelme D., Madrid G., Plantat P., Mora R., Espinoza D., Prieto H. 2021. CRISPR/Cas9 targeted editing of genes associated with fungal susceptibility in Vitis vinifera L. cv. Thompson Seedless using geminivirus-derived replicons. Front. Plant Sci. 12, 791030. https://doi.org/10.3389/fpls.2021.791030

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wan D.Y., Guo Y., Cheng Y., Hu Y., Xiao S., Wang Y., Wen Y.Q. 2020. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Hortic. Res. 7, 116. https://doi.org/10.1038/s41438-020-0339-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang L., Guo Y., Hu Y., Wen Y. 2020. CRISPR/Cas9-mediated mutagenesis of VviEDR2 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Acta Hortic. Sin. 47 (4), 623‒634. https://doi.org/10.16420/j.issn.0513-353x.2019-0660

    Article  CAS  Google Scholar 

  62. Li M., Jiao Y., Wang Y., Zhang N., Wang B., Liu R., Yin X., Xu Y., Liu G. 2020. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Hortic. Res. 7 (1), 149. https://doi.org/10.1038/s41438-020-00371-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sunitha S., Rock C.D. 2020. CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101-14. Transgenic Res. 29 (3), 355–367. https://doi.org/10.1007/s11248-020-00196-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ren C., Guo Y., Kong J., Lecourieux F., Dai Z., Li S., Liang Z. 2020. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biol. 20 (1), 47. https://doi.org/10.1186/s12870-020-2263-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tripathi J.N., Ntui, V.O., Shah T., Tripathi L. 2021. CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol. J. 1 (7), 1291‒1293. https://doi.org/10.1111/pbi.13614

    Article  CAS  Google Scholar 

  66. Hu C., Sheng O., Deng G., He W., Dong T., Yang Q., Dou T., Li C., Gao H., Liu S., Yi G., Bi F. 2021. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit. Plant Biotechnol. J. 19 (4), 654‒656. https://doi.org/10.1111/pbi.13534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Varkonyi-Gasic E., Wang T., Cooney J., Jeon S., Voogd C., Douglas M.J., Pilkington S.M., Akagi T., Allan A.C. 2021. Shy Girl, a kiwifruit suppressor of feminization, restricts gynoecium development via regulation of cytokinin metabolism and signalling. New Phytol. 230, 1461‒1475. https://doi.org/10.1111/nph.17234

    Article  CAS  PubMed  Google Scholar 

  68. Pompili V., Costa L. D., Piazza S., Pindo M., Malnoy M. 2019. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9–FLP/FRT-based gene editing system. Plant Biotechnol. J. 18 (3), 845‒858. https://doi.org/10.1111/pbi.13253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Omori M., Yamane H., Li K., Matsuzaki R., Ebihara S., Li T., Tao R. 2020. Expressional analysis of FT and CEN genes in a continuously flowering highbush blueberry ‘Blue Muffin,’ Acta Hortic. 1280, 197‒201. https://doi.org/10.17660/ActaHortic.2020.1280.27

  70. Jia H., Wang Y., Su H., Huan X., Wang N. 2022. LbC-as12a-D156R efficiently edits LOB1 effector binding elements to generate canker-resistant citrus plants. Cells. 11 (3), 315. https://doi.org/10.3390/cells11030315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou J., Wang G., Liu Z. 2018. Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnol. J. 16 (11), 1868‒1877. https://doi.org/10.1111/pbi.12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Feng J., Dai C., Luo H., Han Y., Liu Z., Kang C. 2019. Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry. J. Exp. Bot. 70 (2), 563‒574. https://doi.org/10.1093/jxb/ery384

    Article  CAS  PubMed  Google Scholar 

  73. Bottero E., Gomez C., Stritzler M., Tajima H., Frare R., Pascuan C., Blumwald E., Ayub N., Soto G. 2022. Generation of a multi‑herbicide‑tolerant alfalfa by using base editing. Plant Cell Rep. 41, 493–495. https://doi.org/10.1007/s00299-021-02827-w

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Z., Wang J., Kuang H., Hou Z., Gong P., Bai M., Zhou S., Yao X., Song S., Yan L., Guan Y. 2022. Elimination of an unfavorable allele conferring pod shattering in an elite soybean cultivar by CRISPR/Cas9. aBIOTECH. 3, 110–114. https://doi.org/10.1007/s42994-022-00071-8

  75. Chen X., Yang S., Zhang Y., Zhu X., Yang X., Zhang C., Li H., Feng X. 2021. Generation of male-sterile soybean lines with the CRISPR/Cas9 system. Crop J. 9 (6), 1270–1277. https://doi.org/10.1016/j.cj.2021.05.003

    Article  Google Scholar 

  76. Wang T., Xun H., Wang W., Ding X, Tian H., Hussain S., Dong Q., Li Y., Cheng Y., Wang C., Lin R., Li G., Qian X., Pang J., Feng X., Dong Y., Liu B., Wang S. 2021. Mutation of GmAITR genes by CRISPR-/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Front. Plant Sci. 12, 779598. https://doi.org/10.3389/fpls.2021.779598

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cai Z., Xian P., Cheng Y., Ma Q., Lian T., Nian H., Ge L. 2021. CRISPR/Cas9-mediated gene editing of GmJAGGED1 increased yield in the low-latitude soybean variety Huachun 6. Plant Biotechnol. J. 19 (10), 1898‒1900. https://doi.org/10.1111/pbi.13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Z., Cheng Q., Gan Z., Hou Z., Zhang Y., Li Y., Li H., Nan H., Yang C., Chen L., Lu S., Shi W., Chen L., Wang Y., Fang C., Kong L., Su T., Li S., Kou K., Wang L., Kong F., Liu B., Dong L. 2021. Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time. Crop J. 9 (4), 767‒776. https://doi.org/10.1016/j.cj.2020.09.005

    Article  Google Scholar 

  79. Ma J., Sun S., Whelan J., Shou H. 2021. CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. Int. J. Mol. Sci. 22, 3877. https://doi.org/10.3390/ijms22083877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nguyen C.X., Paddock K.J., Zhang Z., Stacey M.G. 2021. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol. 229, 920–934. https://doi.org/10.1111/nph.16928

    Article  CAS  PubMed  Google Scholar 

  81. Adachi K., Hirose A., Kanazashi Y., Hibara M., Hirata T., Mikami M., Endo M., Hirose S., Maruyama N., Ishimoto M., Abe J., Yamada T. 2021. Site-directed mutagenesis by biolistic transformation efficiently generates inheritable mutations in a targeted locus in soybean somatic embryos and transgene-free descendants in the T1 generation. Transgenic Res. 30, 77–89. https://doi.org/10.1007/s11248-020-00229-4

    Article  CAS  PubMed  Google Scholar 

  82. Le H., Nguyen N.H., Ta D.T., Le T.N.T., Bui T.P., Le N.T., Nguyen C.X., Rolletschek H., Stacey G., Stacey M.G., Pham N.B., Do P.T., Chu H.H. 2020. CRISPR/Cas9-mediated knockout of galactinol synthase-encoding genes reduces raffinose family oligosaccharide levels in soybean seeds. Front. Plant Sci. 11, 612942. https://doi.org/10.3389/fpls.2020.612942

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sugano S., Hirose A., Kanazashi Y., Adachi K., Hibara M., Itoh T., Mikami M., Endo M., Hirose S., Maruyama N., Abe J., Yamada T. 2020. Simultaneous induction of mutant alleles of two allergenic genes in soybean by using site-directed mutagenesis. BMC Plant Biol. 20, 513. https://doi.org/10.1186/s12870-020-02708-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen L., Nan H., Kong L., Yue L., Yang H., Zhao Q., Fang C., Li H., Cheng Q., Lu S., Kong F., Liu B., Dong L. 2020. Soybean AP1 homologs control flowering time and plant height. J. Integr. Plant Biol. 62, 1868‒1879. https://doi.org/10.1111/jipb.12988

    Article  CAS  PubMed  Google Scholar 

  85. Wang L., Sun S., Wu T., Liu L., Sun X., Cai Y., Li J., Jia H., Yuan S., Chen L., Jiang B., Wu C., Hou W., Han T. 2020. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol. J. 18, 1869‒1881. https://doi.org/10.1111/pbi.13346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang P., Du H., Wang J., Pu Y., Yang C., Yan R., Yang H., Cheng H., Yu D. 2020. Multiplex CRISPR-/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J. 18 (6), 1384‒1395. https://doi.org/10.1111/pbi.13302

    Article  CAS  PubMed  Google Scholar 

  87. Hou Z.H., Wu Y., Cheng Q., Gan Z.R., Liu B.H. 2019. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agron. Sin. (China). 45 (6), 839‒847.

    Google Scholar 

  88. Do P.T., Nguyen C.X., Bui H.T., Tran L.T.N. Stacey G., Gillman J.D., Zhang Z.J. Stacey M.J. 2019. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFA-D2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol. 19, 311. https://doi.org/10.1186/s12870-019-1906-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu N., Lu Q., Wang P., Zhang Q., Zhang J., Qu J., Wang N. 2020. Construction and analysis of GmFAD-2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/Cas9 technology. Int. J. Mol. Sci. 21, 1104. https://doi.org/10.3390/ijms21031104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cai Y., Wang L., Chen L., W T., Liu L., Sun S., Wu C., Yao W., Jiang B., Yuan S., Han T., Hou W. 2020. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol. J. 18, 298‒309. https://doi.org/10.1111/pbi.13199

    Article  CAS  PubMed  Google Scholar 

  91. Han J., Guo B., Guo Y., Zhang B., Wang X., Qiu L.-J. 2019. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Front. Plant Sci. 10, 1446. https://doi.org/10.3389/fpls.2019.01446

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bao A., Chen H., Chen L., Chen S., Hao Q., Guo W., Qiu D., Shan Z., Yang Z., Yuan S., Zhang C., Zhang X., Liu B., Kong F., Li X., Zhou X., Trna L.-S.P., Cao D. 2019. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 19, 131. https://doi.org/10.1186/s12870-019-1746-6

    Article  PubMed  PubMed Central  Google Scholar 

  93. Badhan S., Ball A.S., Mantri N. 2021. First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int. J. Mol. Sci. 22, 396. https://doi.org/10.3390/ijms22010396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dai X., Han H., Huang W., Zhao L., Song M., Cao X., Liu C., Niu X., Lang Z., Ma C., Xie H. 2022. Generating novel male sterile tomatoes by editing respiratory burst oxidase homolog genes. Front. Plant Sci. 12, 817101. https://doi.org/10.3389/fpls.2021.817101

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kawaguchi K., Takei‑Hoshi R., Yoshikawa I., Nishida K., Kobayashi M., Kusano M., Lu Y., Ariizumi T., Ezura H., Otagaki S., Matsumoto S., Shiratake K. 2021. Functional disruption of cell wall invertase inhibitor by genome editing increases sugar content of tomato fruit without decrease fruit weight. Sci. Rep. 11 (1), 21534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang B., Li N., Huang S., Hu J., Wang Q., Tang Y., Yang T., Asmutola P., Wang J., Yu Q. 2021. Enhanced soluble sugar content in tomato fruit using CRISPR/Cas9-mediated SlINVINH1 and SlVPE5 gene editing. Peer J. 9, e12478. https://doi.org/10.7717/peerj.12478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bari V.K., Nassar J.A., Aly R. 2021. CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed Phelipanche aegyptiaca. Sci. Rep. 11, 3905. https://doi.org/10.1038/s41598-021-82897-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hanika K., Schipper D., Chinnappa S., Oortwijn M., Schouten H.J., Thomma B.P.H.J., Bai Y. 2021. Impairment of tomato WAT1 enhances resistance to vascular wilt fungi despite severe growth defects. Front. Plant Sci. 12, 721674. https://doi.org/10.3389/fpls.2021.721674

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liu H., Lihong Liu, Liang D., Zhang M., Jia C., Qi M., Liu Y., Shao Z., Meng F., Hu S., Yin Y., Li C., Wang Q. 2021. SlBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. Science. 24 (8), 102926. https://doi.org/10.1016/j.isci.2021.102926

    Article  CAS  Google Scholar 

  100. Thomazella D.P.D.T., Seong K., Mackelprang R., Dahlbeck D., Geng Y., Gill U.S., Qi T., Pham J., Giuseppe P., Lee C.Y., Ortega A., Cho M., Hutton S.F., Staskawicz B. 2021. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance, Proc. Natl. Acad. Sci. U. S. A. 118 (27), e2026152118. https://doi.org/10.1073/pnas.2026152118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tran M.T., Doan D.T.H., Kim J., Song Y.J., Sung Y.W., Das S., Kim E.J, Son G.H., Kim S.H., Van Vu T., Kim J.Y. 2021. CRISPR/Cas9-based precise excision of SlHyPRP1 domain (s) to obtain salt stress-tolerant tomato. Plant Cell Rep. 40 (6), 999–1011. https://doi.org/10.1007/s00299-020-02622-z

    Article  CAS  PubMed  Google Scholar 

  102. Liu J., Wang S., Wang H., Luo B., Cai Y., Li X., Zhang Y., Wang X. 2021. Rapid generation of tomato male-sterile lines with a marker use for hybrid seed production by CRISPR/Cas9 system. Mol. Breed. 41 (3), 25. https://doi.org/10.1007/s11032-021-01215-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Atarashi H., Jayasinghe W.H., Kwon J., Kim H., Taninaka Y., Igarashi M., Ito K., Yamada T., Masuta C., Nakahara K.S. 2020. Artificially edited alleles of the eukaryotic translation initiation factor 4E1 gene differentially reduce susceptibility to cucumber mosaic virus and potato virus Y in tomato. Front. Microbiol. 11, 564310. https://doi.org/10.3389/fmicb.2020.564310

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yoon Y.J., Venkatesh J., Lee J.H., Kim J., Lee H.E., Kim D.S., Kang B.C. 2020. Genome editing of EIF4E1 in tomato confers resistance to pepper mottle virus. Front. Plant Sci. 11, 1‒11. https://doi.org/10.3389/fpls.2020.01098/full

    Article  Google Scholar 

  105. Kuroiwa K., Thenault C., Nogue F., Perrot L., Maziera M., Galloisa J.L. 2022. CRISPR-based knock-out of EIF4E2 in a cherry tomato background successfully recapitulates resistance to pepper veinal mottle virus. Plant Sci. 316, 111160. https://doi.org/10.1016/j.plantsci.2021.111160

    Article  CAS  PubMed  Google Scholar 

  106. Jung Y.J., Kim D.H., Lee H.J., Nam K.H., Bae S., Nou I.S., Cho Y.-G., Kim M.K., Kang K.K. 2020. Knockout of SlMS10 gene (Solyc02g079810) encoding bHLH transcription factor using CRISPR/Cas9 system confers male sterility phenotype in tomato. Plants. 9 (9), 1189. https://doi.org/10.3390/plants9091189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Illouz-Eliaz N., Nissan I., Nir I., Ramon U., Shohat H., Weiss D. 2020. Mutations in the tomato gibberellin receptors suppress xylem proliferation and reduce water loss under water-deficit conditions. J. Exp. Bot. 71 (12), 3603–3612. https://doi.org/10.1093/jxb/eraa137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Santillán Martínez M.I., Bracuto V., Koseoglou E., Appiano M., Jacobsen E., Visser R.G.F., Wolters A.M.A., Bai Y. 2020. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol. 20, 284. https://doi.org/10.1186/s12870-020-02497-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Faal G.P., Farsi M., Seifi A., Kakhki A.M. 2020. Virus-induced CRISPR-Cas9 system improved resistance against tomato yellow leaf curl virus. Mol. Biol. Rep. 47 (5), 3369–3376. https://doi.org/10.1007/s11033-020-05409-3

    Article  CAS  Google Scholar 

  110. Bari V.K., Nassar J.A., Kheredin S.M., Gal-On A., Ron M., Britt A., Steele D., Yoder J., Aly R. 2019. CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci. Rep. 9, 11438. https://doi.org/10.1038/s41598-019-47893-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ortigosa A., Gimenez-Ibanez S., Leonhardt N., Solano R. 2019. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol. J. 17 (3), 665–673. https://doi.org/10.1111/pbi.13006

    Article  CAS  PubMed  Google Scholar 

  112. Li X., Wang Y., Chen S., Tian H., Fu D., Zhu B., Luo Y., Zhu H. 2018. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 9, 559. https://doi.org/10.3389/fpls.2018.00559

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ahmar S., Zhai Y., Huang H., Yu K., Hafeez M., Khan U., Shahid M., Samad R.A., Khan S.U., Amoo O., Fan C., Zhou Y. 2020. Development of mutants with varying flowering times by targeted editing of multiple SVP gene copies in Brassica napus L. Crop J. 10 (1), 67–74. https://doi.org/10.1016/j.cj.2021.03.023

    Article  Google Scholar 

  114. Cao Y., Yan X., Ran S., Ralph J., Smith R.A., Chen X., Qu C., Li J., Liu L. 2022. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus. Plant Cell Environ. 45 (1), 248‒261. https://doi.org/10.1111/pce.14208

    Article  CAS  PubMed  Google Scholar 

  115. Fan S., Zhang L., Tang M., Cai Y., Liu J., Liu H., Liu J., Terzaghi W., Wang H., Hua W., Zheng M. 2021. CRISPR/Cas9-targeted mutagenesis of the BnaA03.BP gene confers semi-dwarf and compact architecture to rapeseed (Brassica napus L.). Plant Biotechnol. J. 19 (12), 2383–2385. https://doi.org/10.1111/pbi.13703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang X., Cheng J., Lin Y., Fu Y., Xie J., Li B., Bian X., Feng Y., Liang W., Tang Q., Zhang H., Liu X., Zhang Y., Liu C., Jiang D. 2021. Editing homologous copies of an essential gene affords crop resistance against two cosmopolitan necrotrophic pathogens. Plant Biotechnol. J. 19 (11), 2349–2361. https://doi.org/10.1111/pbi.13667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang Z., Wan L., Xin Q., Zhang X., Song Y., Wang P., Hong D., Fan Z., Yang G. 2021. Optimizing glyphosate tolerance in rapeseed by CRISPR/Cas9-based geminiviral donor DNA replicon system with Csy4-based single-guide RNA processing. J. Exp. Bot. 72 (13), 4796–4808. https://doi.org/10.1093/jxb/erab167

    Article  CAS  PubMed  Google Scholar 

  118. Zaman Q.U., Wen C., Yuqin S., Mengyu H., Desheng M., Jacqueline B., Baohong Z., Chao L., Qiong H. 2021. Characterization of SHATTERPROOF homoeologs and CRISPR-Cas9-mediated genome editing enhances pod-shattering resistance in Brassica napus L. CRISPR J. 4 (3), 360–370. https://doi.org/10.1089/crispr.2020.0129

  119. Probsting M., Schenke D., Hossain R., Thurau C., Wighardt L., Schuster A., Zhou Z., Ye W., Rietz S., Leckband G., Cai D. 2020. Loss-of-function of CRT1a (calreticulin) reduces susceptibility to Verticillium longisporum in both Arabidopsis thaliana and oilseed rape (Brassica napus). Plant Biotechnol. J. 18, 2328–2344. https://doi.org/10.1111/pbi.13394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sashidhar N., Harloff H.J., Potgieter L., Jung C. 2020. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol. J. 18 (11), 2241‒2250. https://doi.org/10.1111/pbi.13380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Karunarathna N.L., Wang H., Harloff H-J., Jiang L., Jung C. 2020. Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUC-ER genes. Plant Biotechnol. J. 18 (11), 2251–2266. https://doi.org/10.1111/pbi.13381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu J., Chen C., Xian G., Liu D., Lin L., Yin S., Sun Q., Fang Y., Zhang H., Wang Y. 2020. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnol. J. 18 (9), 1857–1859. https://doi.org/10.1111/pbi.13368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xie T., Chen X., Guo T., Rong H., Chen Z., Sun Q., Batley J., Jiang J., Wang Y. 2020. Targeted knockout of BnTT2 homologues for yellow-seeded Brassica napus with reduced flavonoids and improved fatty acid composition. J. Agric. Food Chem. 6820), 5676–5690. https://doi/https://doi.org/10.1021/acs.jafc.0c01126

  124. Wu J., Yan G., Duan Z., Wang Z., Kang C., Guo L., Liu K., Tu J., Shen J., Yi B., Fu T., Li X., Ma C., Dai C. 2020. Roles of the Brassica napus DELLA protein BnaA6.RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10.ABF2, Front. Plant Sci. 11. 577. https://doi.org/10.3389/fpls.2020.00577

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhai Y., Yu K., Cai S., Hu L., Amoo O., Xu L., Yang Y., Ma B., Jiao Y., Zhang C., Khan M.H.U., Khan S.U. 2020. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol. J. 18 (5), 1153–1168. https://doi.org/10.1111/pbi.13281

    Article  CAS  PubMed  Google Scholar 

  126. Zheng M., Zhang L., Tang M., Liu J., Liu H., Yang H., Fan S., Terzaghi, W., Wang H., Hua W. 2020. Knockout of two Bna MAX 1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol. J. 18 (3), 644–654. https://doi.org/10.1111/pbi.13228

    Article  CAS  PubMed  Google Scholar 

  127. Khan M.H.U., Hu L., Zhu M., Zhai Y., Khan S.U., Ahmar S., Amoo O., Zhang K., Fan C., Zhou Y. 2021. Targeted mutagenesis of EOD3 gene in Brassica napus L. regulates seed production. J. Cell. Physiol. 236 (3), 1996–2007. https://doi.org/10.1002/jcp.29986

    Article  CAS  PubMed  Google Scholar 

  128. Sun Q., Lin L., Liu D., Wu D., Fang Y., Wu J., Wang Y. 2018. CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int. J. Mol. Sci. 19 (9), 2716. https://doi.org/10.3390/ijms19092716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim Y.C., Ahn W.S., Cha A., Jie E. Y., Kim S. W., Hwang B‑H., Lee S. 2022. Development of glucoraphanin-rich broccoli (Brassica oleracea var. italica) by CRISPR/Cas9-mediated DNA-free BolMYB28 editing. Plant Biotechnol. Rep. 16, 123–132. https://doi.org/10.1007/s11816-021-00732-y

    Article  CAS  Google Scholar 

  130. Jeong S.Y., Ahn H., Ryu J., Oh Y., Sivanandhan G., Won K.‑H., Park Y.D., Kim J.‑S., Kim H., Lim Y.P., Kim S.‑G. 2019. Generation of early-flowering chinese cabbage (Brassica rapa spp. pekinensis) through CRISPR/Cas9-mediated genome editing. Plant Biotechnol. Rep. 13 (5), 491–499. https://doi.org/10.1007/s11816-019-00566-9

    Article  Google Scholar 

  131. Neequaye M., Stavnstrup S., Harwood W., Lawrenson T., Hundleby P., Irwin J., Troncoso-Rey P., Saha S., Traka M.H., Mithen R., Østergaard L. 2021. CRISPR-Cas9-mediated gene editing of MYB28 genes impair glucoraphanin accumulation of Brassica oleracea in the field. CRISPR J. 4 (3), 416–426. https://doi.org/10.1089/crispr.2021.0007

    Article  CAS  PubMed  Google Scholar 

  132. Cao W., Dong X., Ji J., Yang L., Fang Z., Zhuang M., Zhang Y., Lv H., Wang Y., Sun P., Liu Y., Li Z., Han F. 2021. BoCER1 is essential for the synthesis of cuticular wax in cabbage (Brassica oleracea L. var. capitata). Sci. Hortic. 277, 109801. https://doi.org/10.1016/j.scienta.2020.109801

    Article  CAS  Google Scholar 

  133. Mishra R., Mohanty J.N., Mahanty B., Joshi R.K. 2021. A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.). Planta. 254 (1), 5. https://doi.org/10.1007/s00425-021-03660-x

    Article  CAS  PubMed  Google Scholar 

  134. Lee K.-R., Jeon I., Yu H., Kim S.-G., Kim H.-S., Ahn S.-J., Lee J., Lee S.-K., Kim H.U. 2021. Increasing monounsaturated fatty acid contents in hexaploid Camelina sativa seed oil by FAD2 gene knockout using CRISPR-Cas9. Front. Plant Sci. 12, 702930. https://doi.org/10.3389/fpls.2021.702930

    Article  PubMed  PubMed Central  Google Scholar 

  135. Janga M.R., Pandeya D., Campbell L.M., Konganti K., Villafuerte S.T., Puckhaber L., Pepper A., Stipanovic R.D., Scheffler J.A, Rathore K.S. 2019. Genes regulating gland development in the cotton plant. Plant Biotechnol. J. 17 (6), 1142–1153. https://doi.org/10.1111/pbi.13044

    Article  CAS  PubMed  Google Scholar 

  136. Chen Y., Fu M., Li H., Wang L., Liu R., Liu Z., Zhang X., Jin S. 2021. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISP-R/Cas9 system. Plant Biotechnol. J. 19 (3), 424–426. https://doi.org/10.1111/pbi.13507

    Article  CAS  PubMed  Google Scholar 

  137. Vavilov N.I. 1920. The law of homologous series in hereditary variation, In Vserossyskaya vstrecha selektsionerov. (3rd All-Russia Breeder’s Meeting). Saratov, p. 16.

  138. Li Z., Liu Z. B., Xing A., Moon B.P., Koellhoffer J.P., Huang L., Cigan A.M. 2015. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 169 (2), 960–970.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Butt H., Eid A., Ali Z., Atia M.A., Mokhtar M.M., Hassan N., Mahfouz M.M. 2017. Efficient CRISP-R/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front. Plant Sci. 8, 1441.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T., Kondo A. 2017. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443. https://doi.org/10.1038/nbt.3833

    Article  CAS  PubMed  Google Scholar 

  141. Shimatani Z., Fujikura U., Ishii H., Matsui Y., Suzuki M., Ueke Y., Taoka K., Terada R., Nishida K., Kondo A. 2018. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol. Biochem. 131, 78‒83. https://doi.org/. 2018.04.028https://doi.org/10.1016/J.PLAPHY

  142. Shimatani Z., Fujikura U., Ishii H., Terada R., Nishida K., Kondo A. 2018. Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice. Data Brief. 20, 1325‒1331. https://doi.org/10.1016/J.DIB.2018.08.124

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sun Y., Jiao G., Liu Z., Zhang X., Li J., Guo X., Du W., Du J., Francis F., Zhao Y., Xia L. 2017. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 8, 298. https://doi.org/10.3389/fpls.2017.00298

    Article  PubMed  PubMed Central  Google Scholar 

  144. Butler N.M., Baltes N.J., Voytas D.F., Douches D.S. 2016. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front. Plant Sci. 7, 1045. https://doi.org/10.3389/fpls.2016.01045

    Article  PubMed  PubMed Central  Google Scholar 

  145. Svitashev S., Young J.K., Schwartz C., Gao H., Falco S.C., Cigan A.M. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169 (2), 931–945. https://doi.org/10.1104/pp.15.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Braatz J., Harloff H.J., Mascher M., Stein N., Himmelbach A., Jung C. 2017. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 174 (2), 935‒942. https://doi.org/10.1104/pp.17.00426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Liu X., Ding Q., Wang W., Pan Y., Tan C., Qiu Y., Chen Y., Li H., Li Y., Ye N., Xu N., Wu X., Ye R., Liu J., Ma C. 2022. Targeted deletion of the first intron of the Wxb allele via CRISPR/Cas9 significantly increases grain amylose content in rice. Rice (N.Y.). 15 (1), 1. https://doi.org/10.1186/s12284-021-00548-y

    Article  CAS  PubMed  Google Scholar 

  148. Yunyan F., Jie Y., Fangquan W., Fangjun F., Wenqi L., Jun W., Yang X., Jinyan Z., Weigong Z. 2019. Production of two elite glutinous rice varieties by editing Wx gene. Rice Sci. 26, 118‒124. https://doi.org/10.1016/j.rsci.2018.04.007

    Article  Google Scholar 

  149. Zhang J., Zhang H., Botella J.R., Zhu J.K. 2018. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 60 (5), 369‒375. https://doi.org/10.1111/jipb.12620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Veillet F., Chauvin L., Kermarrec M.P., Sevestre F., Chauvin J.E. 2019. The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Rep. 38, 1065–1080. https://doi.org/10.1007/s00299-019-02426-w

    Article  CAS  PubMed  Google Scholar 

  151. Kusano H., Ohnuma M., Mutsuro-Aoki H., Asahi T., Ichinosawa D., Onodera H., Asano K., Noda T., Horie T., Fukumoto K., Kihira M., Teramura H., Yazaki K., Umemoto N., Muranaka T., Shimada H. 2018. Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci. Rep. 8, 13753. https://doi.org/10.1038/s41598-018-32049-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Andersson M., Turesson H., Nicolia A., Fält A.S., Samuelsson M., Hofvander P. 2017. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 36 (1), 117‒128. https://doi.org/10.1007/s00299-016-2062-3

    Article  CAS  PubMed  Google Scholar 

  153. Qi X., Wu H., Jiang H., Zhu J., Huang C., Zhang X., Liu C., Cheng B. 2020. Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. Crop J. 8, 440‒448. https://doi.org/10.1016/j.cj.2020.01.006

    Article  Google Scholar 

  154. Abe K., Araki E., Suzuki Y., Toki S., Saika H. 2018. Production of high oleic/low linoleic rice by genome editing. Plant Physiol. Biochem. 131, 58‒62. https://doi.org/10.1016/J.PLAPHY.2018.04.033

    Article  CAS  PubMed  Google Scholar 

  155. Okuzaki A., Ogawa T., Koizuka C., Kaneko K., Inaba M., Imamura J., Koizuka N. 2018. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol. Biochem. 131, 63‒69. https://doi.org/10.1016/J.PLAPHY.2018.04.025

    Article  CAS  PubMed  Google Scholar 

  156. Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Gal-On A. 2016. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17 (7), 1140‒1153. https://doi.org/10.1111/mpp.12375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jia H., Zhang Y., Orbović V., Xu J., White F.F., Jones J.B., Wang N. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 15 (7), 817‒823. https://doi.org/10.1111/pbi.12677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Peng A., Chen S., Lei T., Xu L., He Y., Wu L., Yao L., Zou X. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15 (12), 1509‒1519. https://doi.org/10.1111/pbi.12733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Malnoy M., Viola R., Jung M.H., Koo O.J., Kim S., Kim J.S., Nagamangala Kanchiswamy C. 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front. Plant Sci. 7, 1904.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7 (1), 1‒6. https://doi.org/10.1038/s41598017-00578-x

    Article  CAS  Google Scholar 

  161. Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32 (9), 947‒951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  162. Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. 2017. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91 (4), 714‒724. https://doi.org/10.1111/tpj.13599

    Article  CAS  PubMed  Google Scholar 

  163. Hu X., Cui Y., Dong G., Feng A., Wang D., Zhao C., Zhang Y., Hu J., Zeng D., Guo L., Qian Q. 2019. Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Sci. Rep. 9, 19096. https://doi.org/10.1038/s41598-019-55757-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Khlestkina E.K., Shvachko N.A., Zavarzin A.A., Börner A. 2020. Vavilov′s series of the “green revolution” genes. Russ. J. Genetics. 56 (11), 1371‒1380. https://doi.org/10.1134/S1022795420110046

    Article  Google Scholar 

  165. Zhang S., Zhang R., Song G., Gao J., Li W., Han X., Chen M., Li Y., Li G. 2018. Targeted mutagenesis u-sing the Agrobacterium tumefaciens-mediated CRISPR–Cas9 system in common wheat. BMC Plant Biol. 18, 302. https://doi.org/10.1186/s12870-018-1496-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kim C.Y., Park J.Y., Choi G., Kim S., Vo K.T.X., Jeon J.S., Lee Y.H. 2022. A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Mol. Plant Pathol. 23 (3), 400‒416. https://doi.org/10.1111/mpp.13167

    Article  CAS  PubMed  Google Scholar 

  167. Carey-Fung O., O’Brien M., Beasley J.T., Johnson A.A.T. 2022. A model to incorporate the bHLH transcription factor OsIRO3 within the rice iron homeostasis regulatory network. Int. J. Mol. Sci. 23, 1635. https://doi.org/10.3390/ijms23031635

  168. Takeda Y., Tobimatsu Y., Karlen S.D., Koshiba T., Suzuki S., Yamamura M., Murakami S., Mukai M., Hattori T., Osakabe K., Ralph J., Sakamoto M., Umezawa T. 2018. Downregulation of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification. Plant J. 95 (5), 796‒811. https://doi.org/10.1111/tpj.13988

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 21-66-00012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Ukhatova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukhatova, Y.V., Erastenkova, M.V., Korshikova, E.S. et al. Improvement of Crops Using the CRISPR/Cas System: New Target Genes. Mol Biol 57, 375–397 (2023). https://doi.org/10.1134/S0026893323030135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323030135

Keywords:

Navigation