Skip to main content
Log in

Genes Associated with Increased Stress Sensitivity in Hypertensive ISIAH Rats

  • EVOLUTIONARY, POPULATION, AND MEDICAL GENOMICS, TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Inherited stress-induced arterial hypertension (ISIAH) rats are characterized by increased stress reactivity of the hypothalamic–pituitary–adrenal and sympathoadrenal systems. The genetic basis of increased susceptibility to stress was studied in hypertensive ISIAH rats. Adrenal transcriptomes were sequenced in hypertensive ISIAH and normotensive WAG rats, and nine differentially expressed genes (DEGs) were found in the X-chromosome locus that was previously associated with mild emotional stress-induced increases in blood pressure and plasma corticosterone and an increased adrenal weight in ISIAH rats. An analysis of the functions performed by DEG-encoded proteins suggested the Sms (spermine synthase) gene to be the most likely candidate gene in the X-chromosome locus associated with an elevated stress susceptibility in ISIAH rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Lin W., Wang W., Shao F. 2003. New animal model of emotional stress: behavioral, neuroendocrine and immunological consequences. Chin. Sci. Bull. 48, 1565–1568.

    Article  CAS  Google Scholar 

  2. Markel A.L., Redina O.E., Gilinsky M.A., Dymshits G.M., Kalashnikova E.V., Khvorostova Y.V., Fedoseeva L.A., Jacobson G.S. 2007. Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J. Endocrinol. 195, 439–450.

    Article  CAS  PubMed  Google Scholar 

  3. Markel A.L. 1992. Development of a new strain of rats with inherited stress-induced arterial hypertension. Genet. Hypertens. 218, 405–407.

    Google Scholar 

  4. Redina O.E., Smolenskaya S.E., Maslova L.N., Markel A.L. 2013. The genetic control of blood pressure and body composition in rats with stress-sensitive hypertension. Clin. Exp. Hypertens. 35, 484–495.

    Article  PubMed  Google Scholar 

  5. Lee S.J., Liu J., Qi N., Guarnera R.A., Lee S.Y., Cicila G.T. 2003. Use of a panel of congenic strains to evaluate differentially expressed genes as candidate genes for blood pressure quantitative trait loci. Hypertens. Res. 26, 75–87.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffman P., Tabakoff B. 2005. Gene expression in animals with different acute responses to ethanol. Addict. Biol. 10, 63–69.

    Article  CAS  PubMed  Google Scholar 

  7. Jacob H.J., Kwitek A.E. 2002. Rat genetics: attaching physiology and pharmacology to the genome. Nat. Rev. Genet. 3, 33–42.

    Article  CAS  PubMed  Google Scholar 

  8. Markel A.L., Maslova L.N., Shishkina G.T., Bulygina V.V., Machanova N.A., Jacobson G.S. 1999. Developmental influences on blood pressure regulation in ISIAH rats. Dev. Hypertens. Phenotype: Basic Clin. Stud. 19, 493–526.

    CAS  Google Scholar 

  9. Tamashiro K.L., Nguyen M.M., Ostrander M.M., Gardner S.R., Ma L.Y., Woods S.C., Sakai R.R. 2007. Social stress and recovery: implications for body weight and body composition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1864–1874.

    Article  CAS  PubMed  Google Scholar 

  10. de Souza D.B., Silva D., Silva C.M.C., Sampaio F.J.B., Costa W.S., Cortez C.M. 2011. Effects of immobilization stress on kidneys of Wistar male rats: a morphometrical and stereological analysis. Kidney Blood Press. Res. 34, 424–429.

    Article  Google Scholar 

  11. Antonov Y.V., Alexandrovich Y.V., Redina O.E., Gilinsky M.A., Markel A.L. 2016. Stress and hypertensive disease: adrenals as a link. Experimental study on hypertensive ISIAH rat strain. Clin. Exp. Hypertens. 38, 415–423.

    Article  CAS  PubMed  Google Scholar 

  12. De Champlain J., Van Ameringen M.R. 1972. Regulation of blood pressure by sympathetic nerve fibers and adrenal medulla in normotensive and hypertensive rats. Circ. Res. 31, 617–628.

    Article  CAS  PubMed  Google Scholar 

  13. Lewicka S., Nowicki M., Vecsei P. 1998. Effect of sodium restriction on urinary excretion of cortisol and its metabolites in humans. Steroids. 63, 401–405.

    Article  CAS  PubMed  Google Scholar 

  14. Skelton F.R., Bernardis L.L. 1966. Effect of age, sex, hypophysectomy and gonadectomy on plasma corticosterone levels and adrenal weights following the administration of ACTH and stress. Experientia. 22, 551–552.

    Article  CAS  PubMed  Google Scholar 

  15. Tizabi Y., Aguilera G. 1992. Desensitization of the hypothalamic-pituitary-adrenal axis following prolonged administration of corticotropin-releasing hormone or vasopressin. Neuroendocrinology. 56, 611–618.

    Article  CAS  PubMed  Google Scholar 

  16. Willenberg H.S., Bornstein S.R., Dumser T., Ehrhart-Bornstein M., Barocka A., Chrousos G.P., Scherbaum W.A. 1998. Morphological changes in adrenals from victims of suicide in relation to altered apoptosis. Endocrinol. Res. 24, 963–967.

    Article  CAS  Google Scholar 

  17. Tran P.V., Georgieff M.K., Engeland W.C. 2010. Sodium depletion increases sympathetic neurite outgrowth and expression of a novel TMEM35 gene-derived protein (TUF1) in the rat adrenal zona glomerulosa. Endocrinology. 151, 4852–4860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fedoseeva L.A., Klimov L.O., Ershov N.I., Alexandrovich Y.V., Efimov V.M., Markel A.L., Redina O.E. 2016. Molecular determinants of the adrenal gland functioning related to stress-sensitive hypertension in ISIAH rats. BMC Genomics. 17 (suppl. 14), 989.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Trapnell C., Hendrickson D.G., Sauvageau M., Goff L., Rinn J.L., Pachter L. 2013. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53.

    Article  CAS  PubMed  Google Scholar 

  21. Ershov N.I., Markel A.L., Redina O.E. 2017. Strain-specific single-nucleotide polymorphisms in hypertensive ISIAH rats. Biochemistry (Moscow). 82, 224–235.

    CAS  PubMed  Google Scholar 

  22. Friese R.S., Mahboubi P., Mahapatra N.R., Mahata S.K., Schork N.J., Schmid-Schonbein G.W., O’Connor D.T. 2005. Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension. Am. J. Hypertens. 18, 633–652.

    Article  CAS  PubMed  Google Scholar 

  23. Romero D.G., Plonczynski M.W., Welsh B.L., Gomez-Sanchez C.E., Zhou M.Y., Gomez-Sanchez E.P. 2007. Gene expression profile in rat adrenal zona glomerulosa cells stimulated with aldosterone secretagogues. Physiol. Genomics. 32, 117–127.

    Article  CAS  PubMed  Google Scholar 

  24. Liu X., Serova L., Kvetnansky R., Sabban E.L. 2008. Identifying the stress transcriptome in the adrenal medulla following acute and repeated immobilization. Ann. N.Y. Acad. Sci. 1148, 1–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pegg A.E., Michael A.J. 2010. Spermine synthase. Cell. Mol. Life Sci. 67, 113–121.

    Article  CAS  PubMed  Google Scholar 

  26. Løvaas E. 1995. Hypothesis: spermine may be an important epidermal antioxidant. Med. Hypotheses. 45, 59–67.

    Article  PubMed  Google Scholar 

  27. Pittner R.A., Bracken P., Fears R., Brindley D.N. 1986. Spermine antagonises the effects of dexamethasone, glucagon and cyclic AMP in increasing the activity of phosphatidate phosphohydrolase in isolated rat hepatocytes. FEBS Lett. 207, 42–46.

    Article  CAS  PubMed  Google Scholar 

  28. Hegardt C., Andersson G., Oredsson S.M. 2001. Different roles of spermine in glucocorticoid- and Fas-induced apoptosis. Exp. Cell Res. 266, 333–341.

    Article  CAS  PubMed  Google Scholar 

  29. Rhee H.J., Kim E.J., Lee J.K. 2007. Physiological polyamines: simple primordial stress molecules. J. Cell. Mol. Med. 11, 685–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fleidervish I.A., Libman L., Katz E., Gutnick M.J. 2008. Endogenous polyamines regulate cortical neuronal excitability by blocking voltage-gated Na+ channels. Proc. Natl. Acad. Sci. U. S. A. 105, 18994–18999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kurata H.T., Diraviyam K., Marton L.J., Nichols C.G. 2008. Blocker protection by short spermine analogs: refined mapping of the spermine binding site in a Kir channel. Biophys. J. 95, 3827–3839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pegg A.E. 2009. Mammalian polyamine metabolism and function. IUBMB Life. 61, 880–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vaziri N.D., Wang X.Q., Oveisi F., Rad B. 2000. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension. 36, 142–146.

    Article  CAS  PubMed  Google Scholar 

  34. Lou Y., Zhang F., Luo Y., Wang L., Huang S., Jin F. 2016. Serum and glucocorticoid regulated kinase 1 in sodium homeostasis. Int. J. Mol. Sci. 17, pii: E1307.

    Article  Google Scholar 

  35. Schwartz C.E., Peron A., Kutler M.J. 1993–2022. Snyder–Robinson syndrome. In GeneReviews. ® Adam M.P., Everman D.B., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., Eds. Seattle (WA): Univ. Washington, Seattle.

  36. Chiodini I., Scillitani A. 2008. Role of cortisol hypersecretion in the pathogenesis of osteoporosis. Recenti Prog. Med. 99, 309–313.

    PubMed  Google Scholar 

  37. Cano-Lopez I., Gonzalez-Bono E. 2019. Cortisol levels and seizures in adults with epilepsy: a systematic review. Neurosci. Biobehav. Rev. 103, 216–229.

    Article  CAS  PubMed  Google Scholar 

  38. Li C., Brazill J.M., Liu S., Bello C., Zhu Y., Morimoto M., Cascio L., Pauly R., Diaz-Perez Z., Malicdan M.C.V., Wang H., Boccuto L., Schwartz C.E., Gahl W.A., Boerkoel C.F., Zhai R.G. 2017. Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder–Robinson syndrome. Nat. Commun. 8, 1257.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huynh K. 2017. Basic research: cardioprotective benefits of dietary spermidine. Nat. Rev. Cardiol. 14, 65.

    Article  PubMed  Google Scholar 

  40. Hermansson M., Hänninen S., Hokynar K., Somerharju P. 2016. The PNPLA-family phospholipases involved in glycerophospholipid homeostasis of HeLa cells. Biochim. Biophys. Acta. 1861, 1058–1065.

    Article  CAS  PubMed  Google Scholar 

  41. Gao J.G., Shih A., Gruber R., Schmuth M., Simon M. 2009. GS2 as a retinol transacylase and as a catalytic dyad independent regulator of retinyl ester accretion. Mol. Genet. Metab. 96, 253–260.

    Article  CAS  PubMed  Google Scholar 

  42. O’Byrne S.M., Blaner W.S. 2013. Retinol and retinyl esters: biochemistry and physiology. J. Lipid Res. 54, 1731–1743.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Georgieff M.K., Radmer W.J., Sowell A.L., Yeager P.R., Blaner W.S., Gunter E.W., Johnson D.E. 1991. The effect of glucocorticosteroids on serum, liver, and lung vitamin A and retinyl ester concentrations. J. Pediatr. Gastroenterol. Nutr. 13, 376–382.

    Article  CAS  PubMed  Google Scholar 

  44. Sorg O., Tran C., Carraux P., Didierjean L., Saurat J. 1999. Retinol and retinyl ester epidermal pools are not identically sensitive to UVB irradiation and anti-oxidant protective effect. Dermatology. 199, 302–307.

    Article  CAS  PubMed  Google Scholar 

  45. Takase S., Goda T., Yokogoshi H., Hoshi T. 1992. Changes in vitamin A status following prolonged immobilization (simulated weightlessness). Life Sci. 51, 1459–1466.

    Article  CAS  PubMed  Google Scholar 

  46. Nakano K., Morita A. 1982. Redistribution of vitamin A in tissues of rats with imposed chronic confinement stress. Br. J. Nutr. 47, 645–652.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang Z.M., Wu X.J., Liu Y., Du X.H., Shen S.J., Xu L.Y., Sun W.X. 2013. Changes of gene expression profiles across different phases of vascular calcification in rats. Genet. Mol. Res. 12, 5945–5957.

    Article  CAS  PubMed  Google Scholar 

  48. Gupta V., Galante A., Soteropoulos P., Guo S., Wagner B.J. 2005. Global gene profiling reveals novel glucocorticoid induced changes in gene expression of human lens epithelial cells. Mol. Vis. 11, 1018–1040.

    CAS  PubMed  Google Scholar 

  49. Korkut S., Baştuğ O., Raygada M., Hatipoğlu N., Kurtoğlu S., Kendirci M., Lyssikatos C., Stratakis C.A. 2016. Complex glycerol kinase deficiency and adrenocortical insufficiency in two neonates. J. Clin. Res. Pediatr. Endocrinol. 8, 468–471.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Seltzer W.K., Firminger H., Klein J., Pike A., Fennessey P., McCabe E.R. 1985. Adrenal dysfunction in glycerol kinase deficiency. Biochem. Med. 33, 189–199.

    Article  CAS  PubMed  Google Scholar 

  51. Huq A.H., Lovell R.S., Ou C.N., Beaudet A.L., Craigen W.J. 1997. X-linked glycerol kinase deficiency in the mouse leads to growth retardation, altered fat metabolism, autonomous glucocorticoid secretion and neonatal death. Hum. Mol. Genet. 6, 1803–1809.

    Article  CAS  PubMed  Google Scholar 

  52. Festuccia W.T., Guerra-Sá R., Kawashita N.H., Garófa-lo M.A., Evangelista E.A., Rodrigues V., Kettelhut I.C., Migliorini R.H. 2003. Expression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervous system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1536–1541.

    Article  CAS  PubMed  Google Scholar 

  53. Van Maldergem L., Hou Q., Kalscheuer V.M., Rio M., Doco-Fenzy M., Medeira A., de Brouwer A.P., C-abrol C., Haas S.A., Cacciagli P., Moutton S., Landais E., Motte J., Colleaux L., Bonnet C., Villard L., Dupont J., Man H.Y. 2013. Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth. Hum. Mol. Genet. 22, 3306–3314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Lange I.M., Helbig K.L., Weckhuysen S., Møller R.S., Velinov M., Dolzhanskaya N., Marsh E., Helbig I., Devinsky O., Tang S., Mefford H.C., Myers C.T., van Paesschen W., Striano P., van Gassen K., van Kempen M., de Kovel C.G., Piard J., Minassian B.A., Nezarati M.M., Pessoa A., Jacquette A., Maher B., Balestrini S., Sisodiya S., Warde M.T., De St Martin A., Chelly J., EuroEPINOMICS-RES MAE working group, van’t Slot R., Van Maldergem L., Brilstra E.H., Koeleman B.P. 2016. De novo mutations of KIAA2022 in females cause intellectual disability and intractable epilepsy. J. Med. Genet. 53, 850–858.

    Article  CAS  PubMed  Google Scholar 

  55. Kuroda Y., Ohashi I., Naruto T., Ida K., Enomoto Y., Saito T., Nagai J., Wada T., Kurosawa K. 2015. Delineation of the KIAA2022 mutation phenotype: two patients with X-linked intellectual disability and distinctive features. Am. J. Med. Genet. A. 167, 1349–1353.

    Article  CAS  PubMed  Google Scholar 

  56. Salas I.H., Callaerts-Vegh Z., Arranz A.M., Guix F.X., D’Hooge R., Esteban J.A., De Strooper B., Dotti C.G. 2017. Tetraspanin 6: a novel regulator of hippocampal synaptic transmission and long term plasticity. PLoS One. 12, e0171968.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhong L., Cherry T., Bies C.E., Florence M.A., Gerges N.Z. 2009. Neurogranin enhances synaptic strength through its interaction with calmodulin. EMBO J. 28, 3027–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stein V., House D.R., Bredt D.S., Nicoll R.A. 2003. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J. Neurosci. 23, 5503–5506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matsuda A., Suzuki Y., Honda G., Muramatsu S., Matsuzaki O., Nagano Y., Doi T., Shimotohno K., Harada T., Nishida E., Hayashi H., Sugano S. 2003. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene. 22, 3307–3318.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Y., Tong X., Omoregie E.S., Liu W., Meng S., Ye X. 2012. Tetraspanin 6 (TSPAN6) negatively regulates retinoic acid-inducible gene I-like receptor-mediated immune signaling in a ubiquitination-dependent manner. J. Biol. Chem. 287, 34626–34634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kennedy B.C., Dimova J.G., Dakoji S., Yuan L.L., Gewirtz J.C., Tran P.V. 2016. Deletion of novel protein TMEM35 alters stress-related functions and impairs long-term memory in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R166–R178.

    Article  PubMed  Google Scholar 

  62. Dubinina A.D., Antonov E.V., Fedoseeva L.A., Pivovarova E.N., Markel A.L., Ivanova L.N. 2016. Renin–angiotensin–aldosterone system in ISIAH rats with stress-induced arterial hypertension. Vavilov. Zh. Genet. Sel. 20, 954‒958.

    Google Scholar 

  63. Sato S., Hasegawa M., Fujimoto M., Tedder T.F., Takehara K. 2000. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J. Immunol. 165, 6635–6643.

    Article  CAS  PubMed  Google Scholar 

  64. López-Doménech G., Serrat R., Mirra S., D’Aniello S., Somorjai I., Abad A., Vitureira N., García-Arumí E., Alonso M.T., Rodriguez-Prados M., Burgaya F., Andreu A.L., García-Sancho J., Trullas R., Garcia-Fernàndez J., Soriano E. 2012. The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nat. Commun. 3, 814.

    Article  PubMed  Google Scholar 

  65. Althubiti M., Lezina L., Carrera S., Jukes-Jones R., Giblett S.M., Antonov A., Barlev N., Saldanha G.S., Pritchard C.A., Cain K., Macip S. 2014. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 5, e1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ong W.Y., Ng M.P., Loke S.Y., Jin S., Wu Y.J., Tanaka K., Wong P.T. 2013. Comprehensive gene expression profiling reveals synergistic functional networks in cerebral vessels after hypertension or hypercholesterolemia. PLoS One. 8, e68335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to JSC Genoanalytica (Russia) for help in transcriptome sequencing and primary bioinformatics analysis.

Funding

This work was supported by the Russian Science Foundation (project no. 22-14-00082).

Author information

Authors and Affiliations

Authors

Contributions

L.A. Fedoseeva and S.E. Smolenskaya contributed equally to this study.

Corresponding author

Correspondence to O. E. Redina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Tkacheva

Abbreviations: ISIAH, inherited stress-induced arterial hypertension; WAG, Wistar Albino Glaxo; BP, blood pressure; QTL, quantitative trait locus; DEG, differentially expressed gene; PCR, polymerase chain reaction; RGD, Rat Genome Database.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, L.A., Smolenskaya, S.E., Markel, A.L. et al. Genes Associated with Increased Stress Sensitivity in Hypertensive ISIAH Rats. Mol Biol 57, 346–355 (2023). https://doi.org/10.1134/S0026893323020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323020073

Keywords:

Navigation