Skip to main content
Log in

Structure and Evolution of the AqE Gene in Insects

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The AqE gene encodes a sulfolactate dehydrogenase-like enzyme of the LDH2/MDG2 oxidoreductase family. The gene is found in bacteria and fungi, as well as in animals and plants whose lifestyles are associated with aquatic environments. The AqE gene is present in arthropods and, in particular, insects that are predominantly terrestrial. The distribution and structure of AqE was studied in insects in order to trace its evolutionary fate. The AqE gene was found to be absent from certain insect orders and suborders, being apparently lost. AqE duplication or multiplication was observed in some orders. AqE was found to vary both in length and intron–exon structure, from intronless to multi-intron. An ancient nature was demonstrated for AqE multiplication in insects, while younger duplications were also detected. It was assumed that a new function might be acquired by the gene with the formation of paralogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Honka E., Fabry S., Niermann T., Palm P., Hensel R. 1990. Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. Eur. J. Biochem. 188, 623–632. https://doi.org/10.1111/j.1432-1033.1990.tb15443.x

    Article  CAS  PubMed  Google Scholar 

  2. Jendrossek D., Kratzin H.D., Steinbuchel A. 1993. The Alcaligenes eutrophus ldh structural gene encodes a novel type of lactate dehydrogenase. FEMS Microbiol. Lett. 112, 229–235. https://doi.org/10.1111/j.1574-6968.1993.tb06453.x

    Article  CAS  PubMed  Google Scholar 

  3. Muramatsu H., Mihara H., Kakutani R., Yasuda M., Ueda M., Kurihara T., Esaki N. 2005. The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline. J. Biol. Chem. 280 (7), 5329‒5335. https://doi.org/10.1074/jbc.M411918200

    Article  CAS  PubMed  Google Scholar 

  4. Muramatsu H., Mihara H., Goto M., Miyahara I., Hirotsu K., Kurihara T., Esaki N. 2005. A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins. J. Biosci. Bioeng. 99, 541‒754. https://doi.org/10.1263/jbb.99.541

    Article  CAS  PubMed  Google Scholar 

  5. Puzakova L.V., Puzakov M.V., Soldatov A.A. 2019. Gene encoding a novel enzyme of LDH2/MDH2 family is lost in plant and animal genomes during transition to land. J. Mol. Evol. 87, 52‒59. https://doi.org/10.1007/s00239-018-9884-2

    Article  CAS  PubMed  Google Scholar 

  6. Irimia A., Madern D., Zaccaï G., Vellieux F.M. 2004. Methanoarchaeal sulfolactate dehydrogenase: prototype of a new family of NADH-dependent enzymes. EMBO J. 23, 1234‒1244. https://doi.org/10.1038/sj.emboj.7600147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Denger K., Cook A.M. 2010. Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase. Microbiology (Reading). 156, 967‒974. https://doi.org/10.1099/mic.0.034736-0

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y., Schofield L.R., Sang C., Dey D., Ronimus R.S. 2017. Expression, purification, and characterization of (R)-sulfolactate dehydrogenase (ComC) from the rumen methanogen Methanobrevibacter millerae SM9. Archaea. 6, 5793620. https://doi.org/10.1155/2017/5793620

    Article  CAS  Google Scholar 

  9. Puzakova L. V., Puzakov M.V., Gostyukhina O.L. 2021. Newly discovered AqE gene is highly conserved in non-tetrapod vertebrates. J Mol Evol. 89, 214‒224. https://doi.org/10.1007/s00239-021-09997-x

    Article  CAS  PubMed  Google Scholar 

  10. Berthelot C., Brunet F., Chalopin D., Juanchich A., Bernard M., Noël B., Bento P., Da Silva C., Labadie K., Alberti A., Aury J. M., Louis A., Dehais P., Bardou P., Montfort J., Klopp C., Cabau C., Gaspin C., Thorgaard G.H., Boussaha M., Quillet E., Guymard R., Galiana D., Bobe J., Volff J.N., Genêt C., Wincker P., Jaillon O., Roest Crollius H., Guiguen Y. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat. Commun. 5, 3657.

    Article  PubMed  Google Scholar 

  11. Petit J., David L., Dirks R., Wiegertjes G.F. 2017. Genomic and transcriptomic approaches to study immunology in cyprinids: what is next? Dev. Comp. Immunol. 75, 48‒62.

    Article  CAS  PubMed  Google Scholar 

  12. Puzakova L.V., Puzakov M.V. 2022. Tissue specificity of the AqE gene activity in the yellow croaker Larimichthys crocea. Russ. J. Genet. 58, 538–546.

    Article  CAS  Google Scholar 

  13. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389‒3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792‒1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (6), 1547‒1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rogozin I.B., Carmel L., Csuros M., Koonin E.V. 2012. Origin and evolution of spliceosomal introns. Bi-ol. Direct. 7, 11. https://doi.org/10.1186/1745-6150-7-11

    Article  CAS  Google Scholar 

  17. Cardoso-Moreira M., Long M. 2012. The origin and evolution of new genes. In Evolutionary Genomics. Methods Mol. Biol. (Methods and Protocols). Anisimova M., Ed. 856. Humana Press, 161–186. https://doi.org/10.1007/978-1-61779-585-5_7

  18. Taylor J.S., Raes J. 2004. Duplication and divergence: The evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615‒643. https://doi.org/10.1146/annurev.genet.38.072902.092831

    Article  CAS  PubMed  Google Scholar 

  19. Lynch M., Conery J.S. 2000. The evolutionary fate and consequences of duplicate genes. Science. 290, 1151‒1155. https://doi.org/10.1126/science.290.5494.1151

    Article  CAS  PubMed  Google Scholar 

  20. Zhouravleva G.A., Inge-Vechtomov S.G. 2009. The origin of novel proteins by gene duplication: common aspects in the evolution of color-sensitive pigment proteins and translation termination factors. Mol. Biol. (Moscow). 43, 701–712.

    Article  CAS  Google Scholar 

  21. Copley S.D. 2017. Shining a light on enzyme promiscuity. Curr. Opin. Struct. Biol. 47, 167‒175. https://doi.org/10.1016/j.sbi.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  22. Ohno S. 1970. Introduction. In Evolution by Gene Duplication. Berlin: Springer. https://doi.org/10.1007/978-3-642-86659-3_1

  23. Hahn M.W. 2009. Distinguishing among evolutionary models for the maintenance of gene duplicates. J. Hered. 100, 605‒617. https://doi.org/10.1093/jhered/esp047

    Article  CAS  PubMed  Google Scholar 

  24. Markert C.L. 1971. Developmental Genetics. Heinrich Ursprung.

    Google Scholar 

  25. Markert C.L., Shaklee J.B., Whitt G.S. 1975. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science. 189, 102‒114. https://doi.org/10.1126/science.1138367

    Article  CAS  PubMed  Google Scholar 

  26. Zuckerkandl E. 1978. Multilocus enzymes, gene regulation, and genetic sufficiency. J. Mol. Evol. 12, 57‒89. https://doi.org/10.1007/BF01732545

    Article  CAS  PubMed  Google Scholar 

  27. Eventhoff W., Rossman M. G. 1975. The evolution of the dehydrogenases and kinases. CRC Crit. Rev. Biochem. 3, 111–140.

    Article  Google Scholar 

  28. Moreau R., Dabrowski K. 1998. Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus): An agnathan fish with gulonolactone oxidase activity. Proc. Natl. Acad. Sci. U. S. A. 95, 10279‒10282. https://doi.org/10.1073/pnas.95.17.10279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drouin G., Godin J.R., Pagé B. 2011. The genetics of vitamin C loss in vertebrates. Curr Genomics. 12, 371‒378. https://doi.org/10.2174/138920211796429736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Albalat R., Cañestro C. 2016. Evolution by gene loss. Nat. Rev. Genet. 17, 379‒391. https://doi.org/10.1038/nrg.2016.39

    Article  CAS  PubMed  Google Scholar 

  31. Greenberg A.J., Moran J.R., Coyne J.A., Wu C.I. 2003. Ecological adaptation during incipient speciation revealed by precise gene replacement. Science. 302, 1754‒1757. https://doi.org/10.1126/science.1090432

    Article  CAS  PubMed  Google Scholar 

  32. Graupner M., Xu H., White R.H. 2000. Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. J. Bacteriol. 182, 3688–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meshcheryakova O.V. 2004. Dynamics of the activity of lactate dehydrogenase, malate dehydrogenase, and α‑glycerophosphate dehydrogenase isoenzymes in the process of fish adaptation to various environmental factors. Extended Abstract of Cand. Sci. (Biol.) Dissertation. Petrozavodsk.

  34. Kandoi D., Mohanty S., Tripathy B.C. 2018. Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress. Protoplasma. 255, 547‒563. https://doi.org/10.1007/s00709-017-1168-y

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q.J., Sun H., Dong Q.L., Sun T.Y., Jin Z.X., Hao Y.J., Yao Y.X. 2016. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnol. J. 14, 1986–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yao Y.X., Dong Q.L., Zhai H., You C.X., Hao Y.J. 2011. The functions of an apple cytosolic malate dehydrogenase gene in growth and tolerance to cold and salt stresses. Plant Physiol. Biochem. 49, 257–264.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the state contract “Functional, Metabolic, and Toxicological Aspects of the Existence of Aquatic Organisms and Their Populations in Biotopes with Varios Physicochemical Regiments” with the Kovalevskii Institute of Biology of the Southern Seas (no. 121041400077-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Puzakova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzakova, L.V., Puzakov, M.V. Structure and Evolution of the AqE Gene in Insects. Mol Biol 57, 47–60 (2023). https://doi.org/10.1134/S0026893323010119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323010119

Keywords:

Navigation