Skip to main content
Log in

APPswe/PS1dE9/Blg Transgenic Mouse Line for Modeling Cerebral Amyloid Angiopathy Associated with Alzheimer’s Disease

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common proteinopathy, which is accompanied by a steady decrease in the patient’s cognitive functions with a simultaneous accumulation of amyloid plaques in brain tissues. Amyloid plaques are extracellular aggregates of amyloid β (Aβ) and are associated with neuroinflammation and neurodegeneration. Unlike humans and all other mammals, rats and mice do not reproduce AD-like pathology because there are three amino acid substitutions in their Aβ. Amyloid plaques form in the brains of transgenic mice with overexpression of human Aβ, and such mice are therefore possible to use in biomedicine to model the key features of AD. The transgenic mouse line APPswe/PS1dE9 is widely used as an animal model to study the molecular mechanisms of AD. A study was made to characterize the APPswe/PS1dE9/Blg subline, which was obtained by crossing APPswe/PS1dE9 mice on a CH3 genetic background with C57Bl6/Chg mice. No difference in offspring’s survival and fertility was observed in the subline compared to wild-type control mice. Histological analysis of the brain in the APPswe/PS1dE9/Blg line confirmed the main neuromorphological features of AD and showed that amyloid plaques progressively increase in number and size during aging. The APPswe/PS1dE9/Blg line was assumed to provide a convenient model for developing therapeutic strategies to slow down AD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Konttinen H., Cabral-da-Silva M.E.C., Ohtonen S., Wojciechowski S., Shakirzyanova A., Caligola S., Giugno R., Ishchenko Y., Hernandez D., Fazaludeen M.F., Eamen S., Budia M.G., Fagerlund I., Scoyni F., Korhonen P., Huber N., Haapasalo A., Hewitt A.W., Vickers J., Smith G.C., Oksanen M., Graff C., Kanninen K.M., Lehtonen S., Propson N., Schwartz M.P., Pebay A., Koistinaho J., Ooi L., Malm T. 2019. PSEN1DeltaE9, APPswe, and APOE4 confer disparate phenotypes in human iPSC-derived microglia. Stem. Cell Rep. 13, 669–683.

    Article  CAS  Google Scholar 

  2. Shelkovnikova T.A., Kulikova A.A., Tsvetkov F.O., Peters O., Bachurin S.O., Bukhman V.L., Ninkina.N. N. 2012. Proteinopathies, neurodegenerative disorders with protein aggregation-based pathology. Mol. Biol. (Moscow). 46, 362–374.

    Article  CAS  Google Scholar 

  3. Masters C.L., Bateman R., Blennow K., Rowe C.C., Sperling R.A., Cummings J.L. 2015. Alzheimer’s disease. Nat. Rev. Dis. Primers. 1, 15056.

    Article  PubMed  Google Scholar 

  4. Kozin S.A., Cheglakov I.B., Ovsepyan A.A., Telegin G.B., Tsvetkov P.O., Lisitsa A.V., Makarov A.A. 2013. Peripherally applied synthetic peptide isoAsp7-Abeta(1-42) triggers cerebral beta-amyloidosis. Neurotoxicity Res. 24, 370–376.

    Article  CAS  Google Scholar 

  5. Evin G., Li Q.X. 2012. Platelets and Alzheimer’s disease: potential of APP as a biomarker. W. J. Psychiatry. 2, 102–113.

    Article  Google Scholar 

  6. Vetrivel K.S., Thinakaran G. 2006. Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology. 66, S69–73.

    Article  CAS  PubMed  Google Scholar 

  7. De Strooper B., Annaert W. 2010. Novel research horizons for presenilins and gamma-secretases in cell biology and disease. Annu. Rev. Cell. Dev. Biol. 26, 235–260.

    Article  CAS  PubMed  Google Scholar 

  8. Manczak M., Kandimalla R., Yin X., Reddy P.H. 2018. Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 27, 1332–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan J.X., Sun D., Lee D., Xiong L., Ren X., Guo H.H., Yao L.L., Lu Y., Jung C., Xiong W.C. 2021. Osteoblastic Swedish mutant APP expedites brain deficits by inducing endoplasmic reticulum stress-driven senescence. Commun. Biol. 4, 1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tatarnikova O.G., Orlov M.A., Bobkova N.V. 2015. Beta-amyloid and tau protein: structure, interaction and prion-like properties. Usp. Biol. Khim. 55, 351–390.

    Google Scholar 

  11. Armstrong R.A. 2019. Risk factors for Alzheimer’s disease. Folia Neuropathol. 57, 87–105.

    Article  Google Scholar 

  12. Jankowsky J.L., Fadale D.J., Anderson J., Xu G.M., Gonzales V., Jenkins N.A., Copeland N.G., Lee M.K., Younkin L.H., Wagner S.L., Younkin S.G., Borchelt D.R. 2004. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159–170.

    Article  CAS  PubMed  Google Scholar 

  13. Sasaguri H., Hashimoto S., Watamura N., Sato K., Takamura R., Nagata K., Tsubuki S., Ohshima T., Yoshiki A., Sato K., Kumita W., Sasaki E., Kitazume S., Nilsson P., Winblad B., Saito T., Iwata N., Saido T.C. 2022. Recent advances in the modeling of Alzheimer’s disease. Front. Neurosci. 16, 807473.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Games D., Adams D., Alessandrini R., Barbour R., Borthelette P., Blackwell C., Carr T., Clemens J., Donaldson T., Gillespie F., Guido T., Hagopian S., Johnson-Wood K., Khan K., Lee M., Leibowitz P., Lieberburg I., Little S., Masliah E., McConlogue L., Montoya-Zavala M., Mucke L., Paganini L., Penniman E., Power M., Schenk D., Seubert P., Snyder B., Soriano F., Tan H., Vitale J., Wadsworth S., Wolozin B., Zhao J. 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 373, 523–527.

    Article  CAS  PubMed  Google Scholar 

  15. Kuo Y.M., Beach T.G., Sue L.I., Scott S., Layne K.J., Kokjohn T.A., Kalback W.M., Luehrs D.C., Vishnivetskaya T.A., Abramowski D., Sturchler-Pierrat C., Staufenbiel M., Weller R.O., Roher A.E. 2001. The evolution of A beta peptide burden in the APP23 transgenic mice: implications for A beta deposition in Alzheimer disease. Mol. Med. 7, 609–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y., Younkin S., Yang F., Cole G. 1996. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 274, 99–102.

    Article  CAS  PubMed  Google Scholar 

  17. Davis J., Xu F., Deane R., Romanov G., Previti M.L., Zeigler K., Zlokovic B.V., Van Nostrand W.E. 2004. Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J. Biol. Chem. 279, 20296–20306.

    Article  CAS  PubMed  Google Scholar 

  18. Oddo S., Caccamo A., Shepherd J.D., Murphy M.P., Golde T.E., Kayed R., Metherate R., Mattson M.P., Akbari Y., LaFerla F.M. 2003. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 39, 409–421.

    Article  CAS  PubMed  Google Scholar 

  19. Jankowsky J.L., Slunt H.H., Ratovitski T., Jenkins N.A., Copeland N.G., Borchelt D.R. 2001. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol. Engin. 17, 157–165.

    Article  CAS  Google Scholar 

  20. Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., Van Eldik L., Berry R., Vassar R. 2006. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mucke L., Masliah E., Yu G.Q., Mallory M., Rockenstein E.M., Tatsuno G., Hu K., Kholodenko D., Johnson-Wood K., McConlogue L. 2000. High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radde R., Bolmont T., Kaeser S.A., Coomaraswamy J., Lindau D., Stoltze L., Calhoun M.E., Jaggi F., Wolburg H., Gengler S., Haass C., Ghetti B., Czech C., Holscher C., Mathews P.M., Jucker M. 2006. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 7, 940–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holcomb L., Gordon M.N., McGowan E., Yu X., Benkovic S., Jantzen P., Wright K., Saad I., Mueller R., Morgan D., Sanders S., Zehr C., O’Campo K., Hardy J., Prada C.M., Eckman C., Younkin S., Hsiao K., Duff K. 1998. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4, 97–100.

    Article  CAS  PubMed  Google Scholar 

  24. Kurt M.A., Davies D.C., Kidd M., Duff K., Rolph S.C., Jennings K.H., Howlett D.R. 2001. Neurodegenerative changes associated with beta-amyloid deposition in the brains of mice carrying mutant amyloid precursor protein and mutant presenilin-1 transgenes. Exp. Neurol. 171, 59–71.

    Article  CAS  PubMed  Google Scholar 

  25. McGowan E., Sanders S., Iwatsubo T., Takeuchi A., Saido T., Zehr C., Yu X., Uljon S., Wang R., Mann D., Dickson D., Duff K. 1999. Amyloid phenotype characterization of transgenic mice overexpressing both mutant amyloid precursor protein and mutant presenilin 1 transgenes. Neurobiol. Dis. 6, 231–244.

    Article  CAS  PubMed  Google Scholar 

  26. Toda T., Noda Y., Ito G., Maeda M., Shimizu T. 2011. Presenilin-2 mutation causes early amyloid accumulation and memory impairment in a transgenic mouse model of Alzheimer’s disease. J. Biomed. Biotechnol. 2011, 617974.

    Article  PubMed  Google Scholar 

  27. Rockenstein E., Mallory M., Mante M., Sisk A., Masliaha E. 2001. Early formation of mature amyloid-beta protein deposits in a mutant APP transgenic model depends on levels of Abeta(1-42). J. Neurosci. Res. 66, 573–582.

    Article  CAS  PubMed  Google Scholar 

  28. Platt B., Drever B., Koss D., Stoppelkamp S., Jyoti A., Plano A., Utan A., Merrick G., Ryan D., Melis V., Wan H., Mingarelli M., Porcu E., Scrocchi L., Welch A., Riedel G. 2011. Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS One. 6, e27068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saito T., Matsuba Y., Mihira N., Takano J., Nilsson P., Itohara S., Iwata N., Saido T.C. 2014. Single App knock-in mouse models of Alzheimer’s disease. Nat. Neurosci. 17, 661–663.

    Article  CAS  PubMed  Google Scholar 

  30. Sato K., Watamura N., Fujioka R., Mihira N., Sekiguchi M., Nagata K., Ohshima T., Saito T., Saido T.C., Sasaguri H. 2021. A third-generation mouse model of Alzheimer’s disease shows early and increased cored plaque pathology composed of wild-type human amyloid beta peptide. J. Biol. Chem. 297, 101004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jankowsky J.L., Xu G., Fromholt D., Gonzales V., Borchelt D.R. 2003. Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol. 62, 1220–1227.

    Article  CAS  PubMed  Google Scholar 

  32. Lysikova E.A., Kukharsky M.S., Chaprov K.D., Vasilieva N.A., Roman A.Y., Ovchinnikov R.K., Deykin A.V., Ninkina N., Buchman V.L. 2019. Behavioural impairments in mice of a novel FUS transgenic line recapitulate features of frontotemporal lobar degeneration. Genes Brain Behav. 18, e12607.

    Article  CAS  PubMed  Google Scholar 

  33. D'Angelo C., Costantini E., Salvador N., Marchioni M., Di Nicola M., Greig N.H., Reale M. 2021. nAChRs gene expression and neuroinflammation in APPswe/PS1dE9 transgenic mouse. Sci. Rep. 11, 9711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuhla A., Ruhlmann C., Lindner T., Polei S., Hadlich S., Krause B.J., Vollmar B., Teipel S.J. 2017. APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: a MRS and MRI study. Neuroimage Clin. 15, 581–586.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pezzini A., Del Zotto E., Volonghi I., Giossi A., Costa P., Padovani A. 2009. Cerebral amyloid angiopathy: a common cause of cerebral hemorrhage. Curr. Med. Chem. 16, 2498–2513.

    Article  CAS  PubMed  Google Scholar 

  36. Tsvetkov P.O., Cheglakov I.B., Ovsepyan A.A., Mediannikov O.Y., Morozov A.O., Telegin G.B., Kozin S.A. 2015. Peripherally applied synthetic tetrapeptides HAEE and RADD slow down the development of cerebral beta-amyloidosis in AbetaPP/PS1 transgenic mice. J. Alzheimer’s Dis. 46, 849–853.

    Article  CAS  Google Scholar 

  37. Kozin S.A., Barykin E.P., Telegin G.B., Chernov A.S., Adzhubei A.A., Radko S.P., Mitkevich V.A., Makarov A.A. 2018. Intravenously injected amyloid-beta peptide with isomerized Asp7 and phosphorylated Ser8 residues inhibits cerebral beta-amyloidosis in AbetaPP/PS1 transgenic mice model of Alzheimer’s disease. Front. Neurosci. 12, 518.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Barykin E.P., Petrushanko I.Y., Kozin S.A., Telegin G.B., Chernov A.S., Lopina O.D., Radko S.P., Mitkevich V.A., Makarov A.A. 2018. Phosphorylation of the amyloid-beta peptide inhibits zinc-dependent aggregation, prevents Na,K-ATPase inhibition, and reduces cerebral plaque deposition. Front. Mol. Neurosci. 11, 302.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1346). Animal procedures were funded by the State Task of the Laboratory of Genetic Technologies and Genome Editing for Biomedicine and Animal Health—FZWG-2021-0016

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lysikova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. Experiments with animals obeyed the “Rules of Laboratory Practice in the Russian Federation” (no. 199n dated April 1, 2016). The study was approved by the Ethics Committee at the Belgorod State University (Minutes no. 02.21-4 dated February 8, 2021).

Additional information

Translated by T. Tkacheva

Abbreviations: AD, Alzheimer’s disease; APP, amyloid precursor protein; PSEN1, presenilin 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysikova, E.A., Kuzubova, E.V., Radchenko, A.I. et al. APPswe/PS1dE9/Blg Transgenic Mouse Line for Modeling Cerebral Amyloid Angiopathy Associated with Alzheimer’s Disease. Mol Biol 57, 74–82 (2023). https://doi.org/10.1134/S0026893323010077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323010077

Keywords:

Navigation