Skip to main content
Log in

Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The review summarizes and systematizes the data on the classification, taxonomic distribution, structural features, and functions of proteins with structural repeats. Modern approaches to the identification of structural repeats in proteins are considered. Features of specialized databases of protein domains are described. The review discusses the prospects of using repeat-containing proteins as scaffolds for drug design. The role of proteins with structural repeats in the pathogenesis of various diseases is considered. Various modern approaches to understanding the mechanisms of the evolutionary development of proteins with repeats are described and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Marcotte E.M., Pellegrini M., Yeates T.O., Eisenberg D. 1999. A census of protein repeats. J. Mol. Biol. 293, 151–160. https://doi.org/10.1006/jmbi.1999.3136

    Article  CAS  PubMed  Google Scholar 

  2. Pellegrini M., Renda M.E., Vecchio A. 2012. Ab initio detection of fuzzy amino acid tandem repeats in protein sequences. BMC Bioinformatics. 13, S8. https://doi.org/10.1186/1471-2105-13-S3-S8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pellegrini M., Marcotte E.M., Yeates T.O. 1999. A fast algorithm for genome-wide analysis of proteins with repeated sequences. Proteins. 35, 440–446. PMID:10382671

    Article  CAS  PubMed  Google Scholar 

  4. Jorda J., Kajava A.V. 2010. Protein homorepeats sequences, structures, evolution, and functions. Adv. Protein Chem. Struct. Biol. 79, 59–88. https://doi.org/10.1016/S1876-1623(10)79002-7

    Article  CAS  PubMed  Google Scholar 

  5. Schmitz-Linneweber C., Small I. 2008. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci. 13, 663–670. https://doi.org/10.1016/j.tplants.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  6. Renault L., Nassar N., Vetter I., Becker J., Klebe C., Roth M., Wittinghofer A. 1998. The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature. 392, 97–101. https://doi.org/10.1038/32204

    Article  CAS  PubMed  Google Scholar 

  7. Varela M., Diaz-Rosales P., Pereiro P., Forn-Cuní G., Costa M.M., Dios S., Romero A., Figueras A., Novoa B. 2014. Interferon-induced genes of the expanded IFIT family show conserved antiviral activities in non-mammalian species. PLoS One. 9, e100015. https://doi.org/10.1371/journal.pone.0100015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cerveny L., Straskova A., Dankova V., Hartlova A., Ceckova M., Staud F., Stulik J. 2013. Tetratricopeptide repeat motifs in the world of bacterial pathogens: Role in virulence mechanisms. Infect. Immun. 81, 629–635. https://doi.org/10.1128/IAI.01035-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacobsen S.E., Binkowski K.A., Olszewski N.E. 1996. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 93, 9292–9296. https://doi.org/10.1073/pnas.93.17.9292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baxa U., Cassese T., Kajava A.V., Steven A.C. 2006. Structure, function, and amyloidogenesis of fungal prions: Filament polymorphism and prion variants. Adv. Protein Chem. 73, 125–180. https://doi.org/10.1016/S0065-3233(06)73005-4

    Article  CAS  PubMed  Google Scholar 

  11. Kajava A.V, Squire J.M., Parry D.A.D. 2006. Beta-structures in fibrous proteins. Adv. Protein Chem. 73, 1–15. https://doi.org/10.1016/S0065-3233(06)73001-7

    Article  CAS  PubMed  Google Scholar 

  12. Darling A.L., Uversky V.N. 2017. Intrinsic disorder in proteins with pathogenic repeat expansions. Molecules. 22, 2027. https://doi.org/10.3390/molecules22122027

    Article  CAS  PubMed Central  Google Scholar 

  13. Sikorski P., Atkins E. 2005. New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromolecules. 6, 425–432. https://doi.org/10.1021/bm0494388

    Article  CAS  PubMed  Google Scholar 

  14. Den Dunnen W.F.A. 2017. Trinucleotide repeat disorders. Handb. Clin. Neurol. 145, 383–391. https://doi.org/10.1016/B978-0-12-802395-2.00027-4

    Article  CAS  PubMed  Google Scholar 

  15. Shilova O.N., Deev S.M. 2019. Darpins: Promising targeted proteins for theranostics. Acta Naturae. 11, 42–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mittl P.R., Ernst P., Plückthun A. 2020. Chaperone-assisted structure elucidation with DARPins. Curr. Opin. Struct. Biol. 60, 93–100. https://doi.org/10.1016/j.sbi.2019.12.009

    Article  CAS  PubMed  Google Scholar 

  17. Andrade M.A., Perez-Iratxeta C., Ponting C.P. 2001. Protein repeats: structures, functions, and evolution. J. Struct. Biol. 134, 117–131. https://doi.org/10.1006/jsbi.2001.4392

    Article  CAS  PubMed  Google Scholar 

  18. Ponting C.P., Russell R.B. 2000. Identification of distant homologues of fibroblast growth factors suggests a common ancestor for all beta-trefoil proteins. J. Mol. Biol. 302, 1041–1047. https://doi.org/10.1006/jmbi.2000.4087

    Article  CAS  PubMed  Google Scholar 

  19. Apic G., Huber W., Teichmann S.A. 2003. Multi-domain protein families and domain pairs: Comparison with known structures and a random model of domain recombination. J. Struct. Funct. Genomics. 4, 67–78. https://doi.org/10.1023/a:1026113408773

    Article  CAS  PubMed  Google Scholar 

  20. Ye Y., Godzik A. 2004. Comparative analysis of protein domain organization. Genome Res. 14, 343–353. https://doi.org/10.1101/gr.1610504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moore A.D., Bornberg-Bauer E. 2012. The dynamics and evolutionary potential of domain loss and emergence. Mol. Biol. Evol. 29, 787–796. https://doi.org/10.1093/molbev/msr250

    Article  CAS  PubMed  Google Scholar 

  22. Kersting A.R., Bornberg-Bauer E., Moore A.D., Grath S. 2012. Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Biol. Evol. 4, 316–329. https://doi.org/10.1093/gbe/evs004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kummerfeld S.K., Teichmann S.A. 2005. Relative rates of gene fusion and fission in multi-domain proteins. Trends Genet. 21, 25–30. https://doi.org/10.1016/j.tig.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  24. Weiner J., Bornberg-Bauer E. 2006. Evolution of circular permutations in multidomain proteins. Mol. Biol. Evol. 23, 734–743. https://doi.org/10.1093/molbev/msj091

    Article  CAS  PubMed  Google Scholar 

  25. Weiner J., Beaussart F., Bornberg-Bauer E. 2006. Domain deletions and substitutions in the modular protein evolution. FEBS J. 273, 2037–2047. https://doi.org/10.1111/j.1742-4658.2006.05220.x

    Article  CAS  PubMed  Google Scholar 

  26. Wang M., Caetano-Anollés G. 2009. The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure. 17, 66–78. https://doi.org/10.1016/j.str.2008.11.008

    Article  CAS  PubMed  Google Scholar 

  27. Zmasek C.M., Godzik A. 2011. Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome Biol. 12, R4. https://doi.org/10.1186/gb-2011-12-1-r4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zmasek C.M., Godzik A. 2012. This Déjà vu feeling: Analysis of multidomain protein evolution in eukaryotic genomes. PLoS Comput. Biol. 8, e1002701. https://doi.org/10.1371/journal.pcbi.1002701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Forslund S.K., Kaduk M., Sonnhammer E.L.L. 2019. Evolution of protein domain architectures. Methods Mol. Biol. 1910, 469–504. https://doi.org/10.1007/978-1-4939-9074-0_15

    Article  CAS  PubMed  Google Scholar 

  30. Moore A.D., Grath S., Schüler A., Huylmans A.K., Bornberg-Bauer E. 2013. Quantification and functional analysis of modular protein evolution in a dense phylogenetic tree. Biochim. Biophys. Acta. 1834, 898–907. https://doi.org/10.1016/j.bbapap.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  31. Garrido-Ramos M.A. 2017. Satellite DNA: An evolving topic. Genes (Basel). 8, 230. https://doi.org/10.3390/genes8090230

    Article  CAS  PubMed Central  Google Scholar 

  32. Björklund A.K., Ekman D., Elofsson A. 2006. Expansion of protein domain repeats. PLoS Comput. Biol. 2, e114. https://doi.org/10.1371/journal.pcbi.0020114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buard J., Vergnaud G. 1994. Complex recombination events at the hypermutable minisatellite CEB1 (D2S90). EMBO J. 13, 3203–3210. https://doi.org/10.1002/j.1460-2075.1994.tb06619.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Djian P. 1998. Evolution of simple repeats in DNA and their relation to human disease. Cell. 94, 155–160. https://doi.org/10.1016/s0092-8674(00)81415-4

    Article  CAS  PubMed  Google Scholar 

  35. Ellegren H. 2000. Microsatellite mutations in the germline: Implications for evolutionary inference. Trends Genet. 16, 551–558. https://doi.org/10.1016/s0168-9525(00)02139-9

    Article  CAS  PubMed  Google Scholar 

  36. Kruglyak S., Durrett R.T., Schug M.D., Aquadro C.F. 1998. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc. Natl. Acad. Sci. U. S. A. 95, 10774–10778. https://doi.org/10.1073/pnas.95.18.10774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Björklund A.K., Light S., Sagit R., Elofsson A. 2010. Nebulin: A study of protein repeat evolution. J. Mol. Biol. 402, 38–51. https://doi.org/10.1016/j.jmb.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  38. Deryusheva E.I., Machulin A. V., Selivanova O.M., Galzitskaya O.V. 2017. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family. Proteins. 85, 602–613. https://doi.org/10.1002/prot.25237

    Article  CAS  PubMed  Google Scholar 

  39. Machulin A. V, Deryusheva E.I., Selivanova O.M., Galzitskaya O.V. 2019. The number of domains in the ribosomal protein S1 as a hallmark of the phylogenetic grouping of bacteria. PLoS One. 14, e0221370. https://doi.org/10.1371/journal.pone.0221370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sokol D., Benson G., Tojeira J. 2007. Tandem repeats over the edit distance. Bioinformatics. 23, e30-5. https://doi.org/10.1093/bioinformatics/btl309

    Article  CAS  PubMed  Google Scholar 

  41. Kajava A.V. 2012. Tandem repeats in proteins: From sequence to structure. J. Struct. Biol. 179, 279–88. https://doi.org/10.1016/j.jsb.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  42. Perutz M.F. 1999. Glutamine repeats and neurodegenerative diseases: Molecular aspects. Trends Biochem. Sci. 24, 58–63. https://doi.org/10.1016/s0968-0004(98)01350-4

    Article  CAS  PubMed  Google Scholar 

  43. Fan X. 2001. Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death. Hum. Mol. Genet. 10, 2341–2351. https://doi.org/10.1093/hmg/10.21.2341

    Article  CAS  PubMed  Google Scholar 

  44. Strømme P., Mangelsdorf M.E., Shaw M.A., Lower K.M., Lewis S.M.E., Bruyere H., Lütcherath V., Gedeon A.K., Wallace R.H., Scheffer I.E., Turner G., Partington M., Frints S.G.M., Fryns J.-P., Sutherland G.R., et al. 2002. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat. Genet. 30, 441–445. https://doi.org/10.1038/ng862

    Article  CAS  PubMed  Google Scholar 

  45. Orr H.T., Zoghbi H.Y. 2007. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575–621. https://doi.org/10.1146/annurev.neuro.29.051605.113042

    Article  CAS  PubMed  Google Scholar 

  46. Mosbach V., Poggi L., Richard G.-F. 2019. Trinucleotide repeat instability during double-strand break repair: From mechanisms to gene therapy. Curr. Genet. 65, 17–28. https://doi.org/10.1007/s00294-018-0865-1

    Article  CAS  PubMed  Google Scholar 

  47. Mosbach V., Poggi L., Viterbo D., Charpentier M., Richard G.-F. 2018. TALEN-induced double-strand break repair of CTG trinucleotide repeats. Cell Rep. 22, 2146–2159. https://doi.org/10.1016/j.celrep.2018.01.083

    Article  CAS  PubMed  Google Scholar 

  48. Faux N.G., Bottomley S.P., Lesk A.M., Irving J.A., Morrison J.R., de la Banda M.G., Whisstock J.C. 2005. Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res. 15, 537–551. https://doi.org/10.1101/gr.3096505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jorda J., Xue B., Uversky V.N., Kajava A.V. 2010. Protein tandem repeats – the more perfect, the less structured. FEBS J. 277, 2673–2682. https://doi.org/10.1111/j.1742-464X.2010.07684.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Healy E.F., Little C., King P.J. 2014. A model for small heat shock protein inhibition of polyglutamine aggregation. Cell Biochem. Biophys. 69, 275–281. https://doi.org/10.1007/s12013-013-9795-1

    Article  CAS  PubMed  Google Scholar 

  51. Gruber A., Hornburg D., Antonin M., Krahmer N., Collado J., Schaffer M., Zubaite G., Lüchtenborg C., Sachsenheimer T., Brügger B., Mann M., Baumeister W., Hartl F.U., Hipp M.S., Fernández-Busnadiego R. 2018. Molecular and structural architecture of polyQ aggregates in yeast. Proc. Natl. Acad. Sci. U. S. A. 115, E3446–E3453. https://doi.org/10.1073/pnas.1717978115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lyubchenko Y.L., Krasnoslobodtsev A. V, Luca S. 2012. Fibrillogenesis of huntingtin and other glutamine containing proteins. Subcell. Biochem. 65, 225–251. https://doi.org/10.1007/978-94-007-5416-4_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Christie N.T.M., Lee A.L., Fay H.G., Gray A.A., Kikis E.A. 2014. Novel polyglutamine model uncouples proteotoxicity from aging. PLoS One. 9, e96835. https://doi.org/10.1371/journal.pone.0096835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sorushanova A., Delgado L.M., Wu Z., Shologu N., Kshirsagar A., Raghunath R., Mullen A.M., Bayon Y., Pandit A., Raghunath M., Zeugolis D.I. 2019. The collagen suprafamily: From biosynthesis to advanced biomaterial development. Adv. Mater. 31, e1801651. https://doi.org/10.1002/adma.201801651

    Article  CAS  PubMed  Google Scholar 

  55. Lupas A.N., Bassler J., Dunin-Horkawicz S. 2017. The structure and topology of α-helical coiled coils. Subcell. Biochem. 82, 95–129. https://doi.org/10.1007/978-3-319-49674-0_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hennet T. 2019. Collagen glycosylation. Curr. Opin. Struct. Biol. 56, 131–138. https://doi.org/10.1016/j.sbi.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  57. Berisio R., Vitagliano L., Mazzarella L., Zagari A. 2009. Crystal structure of the collagen triple helix model [(Pro-Pro-Gly)10]3. Protein Sci. 11, 262–270. https://doi.org/10.1110/ps.32602

    Article  CAS  Google Scholar 

  58. Gordon M.K., Hahn R.A. 2010. Collagens. Cell Tissue Res. 339, 247–257. https://doi.org/10.1007/s00441-009-0844-4

    Article  CAS  PubMed  Google Scholar 

  59. Lupas A.N., Gruber M. 2005. The structure of alpha-helical coiled coils. Adv. Protein Chem. 70, 37–78. https://doi.org/10.1016/S0065-3233(05)70003-6

    Article  CAS  PubMed  Google Scholar 

  60. Gromiha M.M., Parry D.A. 2004. Characteristic features of amino acid residues in coiled-coil protein structures. Biophys. Chem. 111, 95–103. https://doi.org/10.1016/j.bpc.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  61. Kobe B., Kajava A.V. 2000. When protein folding is simplified to protein coiling: The continuum of solenoid protein structures. Trends Biochem. Sci. 25, 509–515. https://doi.org/10.1016/s0968-0004(00)01667-4

    Article  CAS  PubMed  Google Scholar 

  62. Groves M.R., Barford D. 1999. Topological characteristics of helical repeat proteins. Curr. Opin. Struct. Biol. 9, 383–389. https://doi.org/10.1016/s0959-440x(99)80052-9

    Article  CAS  PubMed  Google Scholar 

  63. Kajava A.V., Steven A.C. 2006. Beta-rolls, beta-helices, and other beta-solenoid proteins. Adv. Protein Chem. 73, 55–96. https://doi.org/10.1016/S0065-3233(06)73003-0

    Article  CAS  PubMed  Google Scholar 

  64. Hennetin J., Jullian B., Steven A.C., Kajava A.V. 2006. Standard conformations of beta-arches in beta-solenoid proteins. J. Mol. Biol. 358, 1094–1105. https://doi.org/10.1016/j.jmb.2006.02.039

    Article  CAS  PubMed  Google Scholar 

  65. Kobe B., Deisenhofer J. 1996. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. J. Mol. Biol. 264, 1028–1043. https://doi.org/10.1006/jmbi.1996.0694

    Article  CAS  PubMed  Google Scholar 

  66. Peters J.W., Stowell M.H., Rees D.C. 1996. A leucine-rich repeat variant with a novel repetitive protein structural motif. Nat. Struct. Biol. 3, 991–994. https://doi.org/10.1038/nsb1296-991

    Article  CAS  PubMed  Google Scholar 

  67. Huizinga E.G., Tsuji S., Romijn R.A.P., Schiphorst M.E., de Groot P.G., Sixma J.J., Gros P. 2002. Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science. 297, 1176–1179. https://doi.org/10.1126/science.107355

    Article  CAS  PubMed  Google Scholar 

  68. Liou Y.C., Tocilj A., Davies P.L., Jia Z. 2000. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature. 406, 322–324. https://doi.org/10.1038/35018604

    Article  CAS  PubMed  Google Scholar 

  69. Fournier D., Palidwor G.A., Shcherbinin S., Szengel A., Schaefer M.H., Perez-Iratxeta C., Andrade-Navarro M.A. 2013. Functional and genomic analyses of alpha-solenoid proteins. PLoS One. 8, e79894. https://doi.org/10.1371/journal.pone.0079894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cho U.S., Xu W. 2007. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature. 445, 53–57. https://doi.org/10.1038/nature05351

    Article  CAS  PubMed  Google Scholar 

  71. Xing Y., Takemaru K.-I., Liu J., Berndt J.D., Zheng J.J., Moon R.T., Xu W. 2008. Crystal structure of a full-length beta-catenin. Structure. 16, 478–487. https://doi.org/10.1016/j.str.2007.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hast M.A., Beese L.S. 2008. Structure of protein geranylgeranyltransferase-I from the human pathogen Candida albicans complexed with a lipid substrate. J. Biol. Chem. 283, 31933–31940. https://doi.org/10.1074/jbc.M805330200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mitraki A., Papanikolopoulou K., Van Raaij M.J. 2006. Natural triple beta-stranded fibrous folds. Adv. Protein Chem. 73, 97–124. https://doi.org/10.1016/S0065-3233(06)73004-2

    Article  CAS  PubMed  Google Scholar 

  74. Schrag J.D., Bergeron J.J.M., Li Y., Borisova S., Hahn M., Thomas D.Y., Cygler M. 2001. The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol. Cell. 8, 633–644. https://doi.org/10.1016/s1097-2765(01)00318-5

    Article  CAS  PubMed  Google Scholar 

  75. Ellgaard L., Riek R., Herrmann T., Güntert P., Braun D., Helenius A., Wüthrich K. 2001. NMR structure of the calreticulin P-domain. Proc. Natl. Acad. Sci. U. S. A. 98, 3133–3138. https://doi.org/10.1073/pnas.051630098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Makabe K., Biancalana M., Yan S., Tereshko V., Gawlak G., Miller-Auer H., Meredith S.C., Koide S. 2008. High-resolution structure of a self-assembly-competent form of a hydrophobic peptide captured in a soluble beta-sheet scaffold. J. Mol. Biol. 378, 459–467. https://doi.org/10.1016/j.jmb.2008.02.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Alvarez M., Zeelen J.P., Mainfroid V., Rentier-Delrue F., Martial J.A., Wyns L., Wierenga R.K., Maes D. 1998. Triose-phosphate isomerase (TIM) of the psychrophilic bacterium Vibrio marinus. Kinetic and structural properties. J. Biol. Chem. 273, 2199–2206. https://doi.org/10.1074/jbc.273.4.2199

    Article  CAS  PubMed  Google Scholar 

  78. Koebnik R., Locher K.P., Van Gelder P. 2000. Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol. Microbiol. 37, 239–253. https://doi.org/10.1046/j.1365-2958.2000.01983.x

    Article  CAS  PubMed  Google Scholar 

  79. Wierenga R.K. 2001. The TIM-barrel fold: A versatile framework for efficient enzymes. FEBS Lett. 492, 193–198. https://doi.org/10.1016/s0014-5793(01)02236-0

    Article  CAS  PubMed  Google Scholar 

  80. Goldman A.D., Beatty J.T., Landweber L.F. 2016. The TIM barrel architecture facilitated the early evolution of protein-mediated metabolism. J. Mol. Evol. 82, 17–26. https://doi.org/10.1007/s00239-015-9722-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen C.K.-M., Chan N.-L., Wang A.H.-J. 2011. The many blades of the β-propeller proteins: Conserved but versatile. Trends Biochem. Sci. 36, 553–561. https://doi.org/10.1016/j.tibs.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  82. Pitt J.J., Da Silva E., Gorman J.J. 2000. Determination of the disulfide bond arrangement of Newcastle Disease virus hemagglutinin neuraminidase. J. Biol. Chem. 275, 6469–6478. https://doi.org/10.1074/jbc.275.9.6469

    Article  CAS  PubMed  Google Scholar 

  83. Schapira M., Tyers M., Torrent M., Arrowsmith C.H. 2017. WD40 repeat domain proteins: A novel target class? Nat. Rev. Drug Discov. 16, 773–786. https://doi.org/10.1038/nrd.2017.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jain B.P., Pandey S. 2018. WD40 repeat proteins: Signalling scaffold with diverse functions. Protein J. 37, 391–406. https://doi.org/10.1007/s10930-018-9785-7

    Article  CAS  PubMed  Google Scholar 

  85. Kumar V., Yadav A.N., Verma P., Sangwan P., Saxena A., Kumar K., Singh B. 2017. β-Propeller phytases: Diversity, catalytic attributes, current developments and potential biotechnological applications. Int. J. Biol. Macromol. 98, 595–609. https://doi.org/10.1016/j.ijbiomac.2017.01.134

    Article  CAS  PubMed  Google Scholar 

  86. Murzin A.G., Lesk A.M., Chothia C. 1992. beta-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1 beta and 1 alpha and fibroblast growth factors. J. Mol. Biol. 223, 531–543. https://doi.org/10.1016/0022-2836(92)90668-a

    Article  CAS  PubMed  Google Scholar 

  87. Gosavi S., Whitford P.C., Jennings P.A., Onuchic J.N. 2008. Extracting function from a beta-trefoil folding motif. Proc. Natl. Acad. Sci. U. S. A. 105, 10384–19389. https://doi.org/10.1073/pnas.0801343105

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bendre A.D., Ramasamy S., Suresh C.G. 2018. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. Int. J. Biol. Macromol. 113, 933–943. https://doi.org/10.1016/j.ijbiomac.2018.02.148

    Article  CAS  PubMed  Google Scholar 

  89. Zhou J., Li C., Chen A., Zhu J., Zou M., Liao H., Yu Y. 2020. Structural and functional relationship of Cassia obtusifolia trypsin inhibitor to understand its digestive resistance against Pieris rapae. Int. J. Biol. Macromol. 148, 908–920. https://doi.org/10.1016/j.ijbiomac.2020.01.193

    Article  CAS  PubMed  Google Scholar 

  90. Giri Rao V.V.H., Gosavi S. 2015. Structural perturbations present in the folding cores of interleukin-33 and interleukin-1β correlate to differences in their function. J. Phys. Chem. B. 119, 11203–11214. https://doi.org/10.1021/acs.jpcb.5b03111

    Article  CAS  PubMed  Google Scholar 

  91. Hailey K.L., Capraro D.T., Barkho S., Jennings P.A. 2013. Allosteric switching of agonist/antagonist activity by a single point mutation in the interluekin-1 receptor antagonist, IL-1Ra. J. Mol. Biol. 425, 2382–2392. https://doi.org/10.1016/j.jmb.2013.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liao J.-H., Chien C.-T.H., Wu H.-Y., Huang K.-F., Wang I., Ho M.-R., Tu I.-F., Lee I.-M., Li W., Shih Y.-L., Wu C.-Y., Lukyanov P.A., Hsu S.-T.D., Wu S.-H. 2016. A multivalent marine lectin from Crenomytilus grayanus possesses anti-cancer activity through recognizing globotriose Gb3. J. Am. Chem. Soc. 138, 4787–4795. https://doi.org/10.1021/jacs.6b00111

    Article  CAS  PubMed  Google Scholar 

  93. Bensen D.C., Rodriguez S., Nix J., Cunningham M.L., Tari L.W. 2012. Structure of MurA (UDP-N-acetylglucosamine enolpyruvyl transferase. from Vibrio fischeri in complex with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Acta Crystallogr. F: Struct. Biol. Cryst. Commun. 68, 382–385. https://doi.org/10.1107/S1744309112006720

    Article  CAS  Google Scholar 

  94. Pautsch A., Schulz G.E. 1998. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017. https://doi.org/10.1038/2983

    Article  CAS  PubMed  Google Scholar 

  95. Kim K., Kim K.-P., Choi J., Lim J.-A., Lee J., Hwang S., Ryu S. 2010. Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl. Environ. Microbiol. 76, 5188–5198. https://doi.org/10.1128/AEM.02498-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Balasubramaniam D., Arockiasamy A., Kumar P.D., Sharma A., Krishnaswamy S. 2012. Asymmetric pore occupancy in crystal structure of OmpF porin from Salmonella typhi. J. Struct. Biol. 178, 233–244. https://doi.org/10.1016/j.jsb.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  97. Kim B.-H., Andersen C., Kreth J., Ulmke C., Schmid K., Benz R. 2002. Site-directed mutagenesis within the central constriction site of ScrY (sucroseporin): Effect on ion transport and comparison of maltooligosaccharide binding to LamB of Escherichia coli. J. Membr. Biol. 187, 239–253. https://doi.org/10.1007/s00232-001-0167-1

    Article  CAS  PubMed  Google Scholar 

  98. Ferguson A.D., Deisenhofer J. 2002. TonB-dependent receptors: Structural perspectives. Biochim. Biophys. ActaBiomembr. 1565, 318–332. https://doi.org/10.1016/S0005-2736(02)00578-3

    Article  CAS  Google Scholar 

  99. Oteiza P.I., Mackenzie G.G. 2005. Zinc, oxidant-triggered cell signaling, and human health. Mol. Aspects Med. 26, 245–255. https://doi.org/10.1016/j.mam.2005.07.012

    Article  CAS  PubMed  Google Scholar 

  100. García C.C., Damonte E.B. 2007. Zn finger containing proteins as targets for the control of viral infections. Infect. Disord. Drug Targets. 7, 204–212. https://doi.org/10.2174/187152607782110004

    Article  PubMed  Google Scholar 

  101. Kusunoki H., Minasov G., Macdonald R.I., Mondragón A. 2004. Independent movement, dimerization and stability of tandem repeats of chicken brain alpha-spectrin. J. Mol. Biol. 344, 495–511. https://doi.org/10.1016/j.jmb.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  102. Tanaka Y., Sakamoto S., Kuroda M., Goda S., Gao Y.-G., Tsumoto K., Hiragi Y., Yao M., Watanabe N., Ohta T., Tanaka I. 2008. A helical string of alternately connected three-helix bundles for the cell wall-associated adhesion protein Ebh from Staphylococcus aureus. Structure. 16, 488–496. https://doi.org/10.1016/j.str.2007.12.018

    Article  CAS  PubMed  Google Scholar 

  103. Zheng N., Schulman B.A., Song L., Miller J.J., Jeffrey P.D., Wang P., Chu C., Koepp D.M., Elledge S.J., Pagano M., Conaway R.C., Conaway J.W., Harper J.W., Pavletich N.P. 2002. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 416, 703–709. https://doi.org/10.1038/416703a

    Article  CAS  PubMed  Google Scholar 

  104. Lukacik P., Roversi P., White J., Esser D., Smith G.P., Billington J., Williams P.A., Rudd P.M., Wormald M.R., Harvey D.J., Crispin M.D.M., Radcliffe C.M., Dwek R.A., Evans D.J., Morgan B.P., Smith R.A.G., Lea S.M. 2004. Complement regulation at the molecular level: The structure of decay-accelerating factor. Proc. Natl. Acad. Sci. U. S. A. 101, 1279–1284. https://doi.org/10.1073/pnas.0307200101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Harrison O.J., Jin X., Hong S., Bahna F., Ahlsen G., Brasch J., Wu Y., Vendome J., Felsovalyi K., Hampton C.M., Troyanovsky R.B., Ben-Shaul A., Frank J., Troyanovsky S.M., Shapiro L., Honig B. 2011. The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure. 19, 244–256. https://doi.org/10.1016/j.str.2010.11.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Van Bibber N.W., Haerle C., Khalife R., Xue B., Uversky V.N. 2020. Intrinsic disorder in tetratricopeptide repeat proteins. Int. J. Mol. Sci. 21, 3709. https://doi.org/10.3390/ijms21103709

    Article  CAS  PubMed Central  Google Scholar 

  107. Machulin A., Deryusheva E., Lobanov M., Galzitskaya O. 2019. Repeats in S1 proteins: Flexibility and tendency for intrinsic disorder. Int. J. Mol. Sci. 20, 2377. https://doi.org/10.3390/ijms20102377

    Article  CAS  PubMed Central  Google Scholar 

  108. Aachmann F.L., Svanem B.I.G., Güntert P., Peter-sen S.B., Valla S., Wimmer R. 2006. NMR structure of the R-module: A parallel beta-roll subunit from an Azotobacter vinelandii mannuronan C-5 epimerase. J. Biol. Chem. 281, 7350–7356. https://doi.org/10.1074/jbc.M510069200

    Article  CAS  PubMed  Google Scholar 

  109. Apic G., Gough J., Teichmann S.A. 2001. Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J. Mol. Biol. 310, 311–325. https://doi.org/10.1006/jmbi.2001.4776

    Article  CAS  PubMed  Google Scholar 

  110. Ekman D., Björklund A.K., Frey-Skött J., Elofsson A. 2005. Multi-domain proteins in the three kingdoms of life: Orphan domains and other unassigned regions. J. Mol. Biol. 348, 231–243. https://doi.org/10.1016/j.jmb.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  111. Delucchi M., Schaper E., Sachenkova O., Elofsson A., Anisimova M. 2020. A new census of protein tandem repeats and their relationship with intrinsic disorder. Genes (Basel). 11, 407. https://doi.org/10.3390/genes11040407

    Article  CAS  PubMed Central  Google Scholar 

  112. Schaper E., Korsunsky A., Pečerska J., Messina A., Murri R., Stockinger H., Zoller S., Xenarios I., Anisimova M. 2015. TRAL: Tandem repeat annotation library. Bioinformatics. 31, 3051–3053. https://doi.org/10.1093/bioinformatics/btv306

    Article  CAS  PubMed  Google Scholar 

  113. Tørresen O.K., Star B., Mier P., Andrade-Navarro M.A., Bateman A., Jarnot P., Gruca A., Grynberg M., Kajava A.V., Promponas V.J., Anisimova M., Jakobsen K.S., Linke D. 2019. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 47, 10994–11006. https://doi.org/10.1093/nar/gkz841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bilgin Sonay T., Koletou M., Wagner A. 2015. A survey of tandem repeat instabilities and associated gene expression changes in 35 colorectal cancers. BMC Genomics. 16, 702. https://doi.org/10.1186/s12864-015-1902-9

    Article  CAS  PubMed Central  Google Scholar 

  115. Theriot J.A. 2013. Why are bacteria different from eukaryotes? BMC Biol. 11, 119. https://doi.org/10.1186/1741-7007-11-119

    Article  PubMed  PubMed Central  Google Scholar 

  116. Schaper E., Gascuel O., Anisimova M. 2014. Deep conservation of human protein tandem repeats within the eukaryotes. Mol. Biol. Evol. 31, 1132–1148. https://doi.org/10.1093/molbev/msu062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schaper E., Kajava A.V., Hauser A., Anisimova M. 2012. Repeat or not repeat?–Statistical validation of tandem repeat prediction in genomic sequences. Nucleic Acids Res. 40, 10005–10017. https://doi.org/10.1093/nar/gks726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Galzitskaya O.V., Lobanov M.Y. 2015. Phyloproteomic analysis of 11780 six-residue-long motifs occurrences. Biomed. Res. Int. 2015, 208346. https://doi.org/10.1155/2015/208346

  119. Lobanov M.Y., Galzitskaya O.V. 2011. Disordered patterns in clustered Protein Data Bank and in eukaryotic and bacterial proteomes. PLoS One. 6, e27142. https://doi.org/10.1371/journal.pone.0027142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lobanov M.Y., Galzitskaya O.V. 2012. Occurrence of disordered patterns and homorepeats in eukaryotic and bacterial proteomes. Mol. Biosyst. 8, 327–337. https://doi.org/10.1039/c1mb05318c

    Article  CAS  PubMed  Google Scholar 

  121. Kajava A.V. 2001. Review: Proteins with repeated sequence–structural prediction and modeling. J. Struct. Biol. 134, 132–144. https://doi.org/10.1006/jsbi.2000.4328

    Article  CAS  PubMed  Google Scholar 

  122. Jernigan K.K., Bordenstein S.R. 2015. Tandem-repeat protein domains across the tree of life. Peer. J. 3, e732. https://doi.org/10.7717/peerj.732

    Article  PubMed  PubMed Central  Google Scholar 

  123. D’Andrea L.D., Regan L. 2003. TPR proteins: The versatile helix. Trends Biochem. Sci. 28, 655–662. https://doi.org/10.1016/j.tibs.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  124. Gruber M., Söding J., Lupas A.N. 2005. REPPER-repeats and their periodicities in fibrous proteins. Nucleic Acids Res. 33, W239–W243. https://doi.org/10.1093/nar/gki405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Taylor W.R., Heringa J., Baud F., Flores T.P. 2002. A Fourier analysis of symmetry in protein structure. Protein Eng. 15, 79–89. https://doi.org/10.1093/protein/15.2.79

    Article  CAS  PubMed  Google Scholar 

  126. Newman A.M., Cooper J.B. 2007. XSTREAM: A practical algorithm for identification and architecture modeling of tandem repeats in protein sequences. BMC Bioinformatics. 8, 382. https://doi.org/10.1186/1471-2105-8-382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jorda J., Kajava A.V. 2009. T-REKS: Identification of tandem REpeats in sequences with a K-meanS based algorithm. Bioinformatics. 25, 2632–2638. https://doi.org/10.1093/bioinformatics/btp482

    Article  CAS  PubMed  Google Scholar 

  128. Heger A., Holm L. 2000. Rapid automatic detection and alignment of repeats in protein sequences. Proteins. 41, 224–237. https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  129. Szklarczyk R., Heringa J. 2004. Tracking repeats using significance and transitivity. Bioinformatics. 20 (Suppl 1), i311–i317. https://doi.org/10.1093/bioinformatics/bth911

    Article  CAS  PubMed  Google Scholar 

  130. Bucher P., Karplus K., Moeri N., Hofmann K. 1996. A flexible motif search technique based on generalized profiles. Comput. Chem. 20, 3–23. https://doi.org/10.1016/s0097-8485(96)80003-9

    Article  CAS  PubMed  Google Scholar 

  131. Biegert A., Söding J. 2008. De novo identification of highly diverged protein repeats by probabilistic consistency. Bioinformatics. 24, 807–814. https://doi.org/10.1093/bioinformatics/btn039

    Article  CAS  PubMed  Google Scholar 

  132. Bliven S.E., Lafita A., Rose P.W., Capitani G., Prlić A., Bourne P.E. 2019. Analyzing the symmetrical arrangement of structural repeats in proteins with CE-Symm. PLoS Comput. Biol. 15, e1006842. https://doi.org/10.1371/journal.pcbi.1006842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chakrabarty B., Parekh N. 2014. Identifying tandem ankyrin repeats in protein structures. BMC Bioinformatics. 15, 6599. https://doi.org/10.1186/s12859-014-0440-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sabarinathan R., Basu R., Sekar K. 2010. ProSTRIP: A method to find similar structural repeats in three-dimensional protein structures. Comput. Biol. Chem. 34, 126–130. https://doi.org/10.1016/j.compbiolchem.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  135. Abraham A.-L., Rocha E.P.C., Pothier J. 2008. Swelfe: A detector of internal repeats in sequences and structures. Bioinformatics. 24, 1536–1537. https://doi.org/10.1093/bioinformatics/btn234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Do Viet P., Roche D.B., Kajava A.V. 2015. TAPO: A combined method for the identification of tandem repeats in protein structures. FEBS Lett. 589, 2611–2619. https://doi.org/10.1016/j.febslet.2015.08.025

    Article  CAS  PubMed  Google Scholar 

  137. Fankhauser N., Nguyen-Ha T.-M., Adler J., Mäser P. 2007. Surface antigens and potential virulence factors from parasites detected by comparative genomics of perfect amino acid repeats. Proteome Sci. 5, 20. https://doi.org/10.1186/1477-5956-5-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Parra R.G., Espada R., Sánchez I.E., Sippl M.J., Ferreiro D.U. 2013. Detecting repetitions and periodicities in proteins by tiling the structural space. J. Phys. Chem. B. 117, 12887–12897. https://doi.org/10.1021/jp402105j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G.A., Sonnhammer E.L.L., Tosatto S.C.E., Paladin L., Raj S., Richardson L.J., Finn R.D., Bateman A. 2021. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419. https://doi.org/10.1093/nar/gkaa913

    Article  CAS  PubMed  Google Scholar 

  140. Letunic I., Khedkar S., Bork P. 2021. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 49, D458–D460. https://doi.org/10.1093/nar/gkaa937

    Article  CAS  PubMed  Google Scholar 

  141. Blum M., Chang H.-Y., Chuguransky S., Grego T., Kandasaamy S., Mitchell A., Nuka G., Paysan-Lafosse T., Qureshi M., Raj S., Richardson L., Salazar G.A., Williams L., Bork P. Bridge A., et al. 2021. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354. https://doi.org/10.1093/nar/gkaa977

    Article  CAS  PubMed  Google Scholar 

  142. Sigrist C.J.A., De Castro E., Cerutti L., Cuche B.A., Hulo N., Bridge A., Bougueleret L., Xenarios I. 2013. New and continuing developments at PROSITE. Nucleic Acids Res. 41, D344–D347. https://doi.org/10.1093/nar/gks1067

    Article  CAS  PubMed  Google Scholar 

  143. Pandurangan A.P., Stahlhacke J., Oates M.E., Smi-thers B., Gough J. 2019. The SUPERFAMILY 2.0 database: A significant proteome update and a new webserver. Nucleic Acids Res. 47, D490–D494. https://doi.org/10.1093/nar/gky1130

    Article  CAS  PubMed  Google Scholar 

  144. UniProt Consortium. 2021. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489. https://doi.org/10.1093/nar/gkaa1100

    Article  CAS  Google Scholar 

  145. Jorda J., Baudrand T., Kajava A.V. 2012. PRDB: Protein Repeat DataBase. Proteomics. 12, 1333–1336. https://doi.org/10.1002/pmic.201100534

    Article  CAS  PubMed  Google Scholar 

  146. Paladin L., Bevilacqua M., Errigo S., Piovesan D., Mičetić I., Necci M., Monzon A.M., Fabre M.L., Lopez J.L., Nilsson J.F., Rios J., Menna P.L., Cabrera M., Buitron M.G., Kulik M.G., et al. 2021. RepeatsDB in 2021: Improved data and extended classification for protein tandem repeat structures. Nucleic Acids Res. 49, D452–D457. https://doi.org/10.1093/nar/gkaa1097

    Article  CAS  PubMed  Google Scholar 

  147. Burley S.K., Bhikadiya C., Bi C., Bittrich S., Chen L., Crichlow G. V, Christie C.H., Dalenberg K., Di Costanzo L., Duarte J.M., Dutta S., Feng Z., Ganesan S., Goodsell D.S., Ghosh S., et al. 2021. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49, D437–D451. https://doi.org/10.1093/nar/gkaa1038

    Article  CAS  PubMed  Google Scholar 

  148. Offord V., Werling D. 2013. LRRfinder2.0: A webserver for the prediction of leucine-rich repeats. Innate Immun. 19, 398–402. https://doi.org/10.1177/1753425912465661

    Article  CAS  PubMed  Google Scholar 

  149. Lobanov M.Y., Sokolovskiy I.V, Galzitskaya O.V. 2014. HRaP: Database of occurrence of HomoRepeats and patterns in proteomes. Nucleic Acids Res. 42, D273–D278. https://doi.org/10.1093/nar/gkt927

    Article  CAS  PubMed  Google Scholar 

  150. Deryusheva E. I., Machulin, A.V., Selivanova O.M., Serdyuk, I.N. 2010. The S1 ribosomal protein family contains a unique conservative domain. Mol. Biol. (Moscow). 44 (4), 642–647.

    Article  CAS  Google Scholar 

  151. Orafidiya F.A., McEwan I.J. 2015. Trinucleotide repeats and protein folding and disease: The perspective from studies with the androgen receptor. Futur. Sci. OA. 1, FSO47. https://doi.org/10.4155/fso.15.47

    Article  CAS  Google Scholar 

  152. Walcott J.L., Merry D.E. 2002. Trinucleotide repeat disease. The androgen receptor in spinal and bulbar muscular atrophy. Vitam. Horm. 65, 127–147. https://doi.org/10.1016/s0083-6729(02)65062-9

    Article  CAS  PubMed  Google Scholar 

  153. McEwan I.J. 2001. Structural and functional alterations in the androgen receptor in spinal bulbar muscular atrophy. Biochem. Soc. Trans. 29, 222–227. https://doi.org/10.1042/0300-5127:0290222

    Article  CAS  PubMed  Google Scholar 

  154. Hor C.H.H., Tang B.L. 2019. Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy. Rev. Neurosci. 30, 261–277. https://doi.org/10.1515/revneuro-2018-0045

    Article  CAS  PubMed  Google Scholar 

  155. Mollereau B., Walter L. 2019. Is WDR45 the missing link for ER stress-induced autophagy in beta-propeller associated neurodegeneration?. Autophagy. 15, 2163–2164. https://doi.org/10.1080/15548627.2019.1668229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pons T., Gómez R., Chinea G., Valencia A. 2003. Beta-propellers: Associated functions and their role in human diseases. Curr. Med. Chem. 10, 505–524. https://doi.org/10.2174/0929867033368204

    Article  CAS  PubMed  Google Scholar 

  157. Matsushima N., Takatsuka S., Miyashita H., Kretsinger R.H. 2019. Leucine rich repeat proteins: Sequences, mutations, structures and diseases. Protein Pept. Lett. 26, 108–131. https://doi.org/10.2174/0929866526666181208170027

    Article  CAS  PubMed  Google Scholar 

  158. Matsushima N., Tachi N., Kuroki Y., Enkhbayar P., Osaki M., Kamiya M., Kretsinger R.H. 2005. Structural analysis of leucine-rich-repeat variants in proteins associated with human diseases. Cell. Mol. Life Sci. 62, 2771–2791. https://doi.org/10.1007/s00018-005-5187-z

    Article  CAS  PubMed  Google Scholar 

  159. Hugot J.P., Chamaillard M., Zouali H., Lesage S., Cézard J.P., Belaiche J., Almer S., Tysk C., O’Morain C.A., Gassull M., Binder V., Finkel Y., Cortot A., Modigliani R., Laurent-Puig P., et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 411, 599–603. https://doi.org/10.1038/35079107

    Article  CAS  PubMed  Google Scholar 

  160. Shimizu T. 2013. Structural basis for β-galactosidase associated with lysosomal disease. Yakugaku Zasshi. 133, 509–517. https://doi.org/10.1248/yakushi.13-00001-1

    Article  CAS  PubMed  Google Scholar 

  161. Ohto U., Usui K., Ochi T., Yuki K., Satow Y., Shimizu T. 2012. Crystal structure of human β-galactosidase: Structural basis of Gm1 gangliosidosis and morquio B diseases. J. Biol. Chem. 287, 1801–1812. https://doi.org/10.1074/jbc.M111.293795

    Article  CAS  PubMed  Google Scholar 

  162. Ishiguro N., Motoi T., Osaki M., Araki N., Minamizaki T., Moriyama M., Ito H., Yoshida H. 2005. Immunohistochemical analysis of a muscle ankyrin-repeat protein, Arpp, in paraffin-embedded tumors: Evaluation of Arpp as a tumor marker for rhabdomyosarcoma. Hum. Pathol. 36, 620–625. https://doi.org/10.1016/j.humpath.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  163. Ishiguro N., Baba T., Ishida T., Takeuchi K., Osaki M., Araki N., Okada E., Takahashi S., Saito M., Watanabe M., Nakada C., Tsukamoto Y., Sato K., Ito K., Fukayama M., et al. 2002. Carp, a cardiac ankyrin-repeated protein, and its new homologue, Arpp, are differentially expressed in heart, skeletal muscle, and rhabdomyosarcomas. Am. J. Pathol. 160, 1767–1778. https://doi.org/10.1016/S0002-9440(10)61123-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tee J.-M., Peppelenbosch M.P. 2010. Anchoring skeletal muscle development and disease: The role of ankyrin repeat domain containing proteins in muscle physiology. Crit. Rev. Biochem. Mol. Biol. 45, 318–330. https://doi.org/10.3109/10409238.2010.488217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Crist R.C., Roth J.J., Baran A.A., McEntee B.J., Siracusa L.D., Buchberg A.M. 2010. The armadillo repeat domain of Apc suppresses intestinal tumorigenesis. Mamm. Genome. 21, 450–457. https://doi.org/10.1007/s00335-010-9288-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li D., Song H., Mei H., Fang E., Wang X., Yang F., Li H., Chen Y., Huang K., Zheng L., Tong Q. 2018. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat. Commun. 9, 2829. https://doi.org/10.1038/s41467-018-05286-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Topaz O., Shurman D.L., Bergman R., Indelman M., Ratajczak P., Mizrachi M., Khamaysi Z., Behar D., Petronius D., Friedman V., Zelikovic I., Raimer S., Metzker A., Richard G., Sprecher E. 2004. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat. Genet. 36, 579–581. https://doi.org/10.1038/ng1358

    Article  CAS  PubMed  Google Scholar 

  168. Duncan E.L., Danoy P., Kemp J.P., Leo P.J., McCloskey E., Nicholson G.C., Eastell R., Prince R.L., Eisman J.A., Jones G., Sambrook P.N., Reid I.R., Dennison E.M., Wark J., Richards J.B., et al. 2011. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 7, e1001372. https://doi.org/10.1371/journal.pgen.1001372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Esapa C.T., Head R.A., Jeyabalan J., Evans H., Hough T.A., Cheeseman M.T., McNally E.G., Carr A.J., Thomas G.P., Brown M.A., Croucher P.I., Brown S.D.M., Cox R.D., Thakker R.V. 2012. A mouse with an N-Ethyl-N-nitrosourea (ENU. Induced Trp589Arg Galnt3 mutation represents a model for hyperphosphataemic familial tumoural calcinosis. PLoS One. 7, e43205. https://doi.org/10.1371/journal.pone.0043205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lorenz V., Cejas R.B., Bennett E.P., Nores G.A., Irazoqui F.J. 2017. Functional control of polypeptide GalNAc-transferase 3 through an acetylation site in the C-terminal lectin domain. Biol. Chem. 398, 1237–1246. https://doi.org/10.1515/hsz-2017-0130

    Article  CAS  PubMed  Google Scholar 

  171. Percival J.M. 2018. Perspective: Spectrin-like repeats in dystrophin have unique binding preferences for syntrophin adaptors that explain the mystery of how nNOSμ localizes to the sarcolemma. Front. Physiol. 9, 1369. https://doi.org/10.3389/fphys.2018.01369

    Article  PubMed  PubMed Central  Google Scholar 

  172. Thomas G.D. 2013. Functional muscle ischemia in Duchenne and Becker muscular dystrophy. Front. Physiol. 4, 381. https://doi.org/10.3389/fphys.2013.00381

    Article  PubMed  PubMed Central  Google Scholar 

  173. Dušková L., Nohelová L., Loja T., Fialová J., Zapletalová P., Réblová K., Tichý L., Freiberger T., Fajkusová L. 2020. Low density lipoprotein receptor variants in the beta-propeller subdomain and their functional impact. Front. Genet. 11, 691. https://doi.org/10.3389/fgene.2020.00691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cogo S., Manzoni C., Lewis P.A., Greggio E. 2020. Leucine-rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. J. Neurochem. 152, 273–283. https://doi.org/10.1111/jnc.14908

    Article  CAS  PubMed  Google Scholar 

  175. Lee J.-M., Correia K., Loupe J., Kim K.-H., Barker D., Hong E.P., Chao M.J., Long J.D., Lucente D., Vonsattel J.P.G., Pinto R.M., Abu Elneel K., Ramos E.M., Mysore J.S., Gillis T., et al. 2019. CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell. 178, 887–900, e14. https://doi.org/10.1016/j.cell.2019.06.036

    Article  CAS  Google Scholar 

  176. Bates G.P., Dorsey R., Gusella J.F., Hayden M.R., Kay C., Leavitt B.R., Nance M., Ross C.A., Scahill R.I., Wetzel R., Wild E.J., Tabrizi S.J. 2015. Huntington disease. Nat. Rev. Dis. Prim. 1, 15005. https://doi.org/10.1038/nrdp.2015.5

    Article  PubMed  Google Scholar 

  177. Prat C., Lemaire O., Bret J., Zabraniecki L., Fournié B. 2008. Morquio syndrome: Diagnosis in an adult. Joint. Bone Spine. 75, 495–498. https://doi.org/10.1016/j.jbspin.2007.07.021

    Article  PubMed  Google Scholar 

  178. Bley A.E., Giannikopoulos O.A., Hayden D., Kubilus K., Tifft C.J., Eichler F.S. 2011. Natural history of infantile G(M2. gangliosidosis. Pediatrics. 128, e1233–1241. https://doi.org/10.1542/peds.2011-0078

    Article  PubMed  PubMed Central  Google Scholar 

  179. Saravanan K.M., Ponnuraj K. 2019. Sequence and structural analysis of fibronectin-binding protein reveals importance of multiple intrinsic disordered tandem repeats. J. Mol. Recognit. 32, e2768. https://doi.org/10.1002/jmr.2768

    Article  CAS  PubMed  Google Scholar 

  180. Li X., Tao Y., Murphy J.W., Scherer A.N., Lam T.T., Marshall A.G., Koleske A.J., Boggon T.J. 2017. The repeat region of cortactin is intrinsically disordered in solution. Sci. Rep. 7, 16696. https://doi.org/10.1038/s41598-017-16959-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Roberts S., Dzuricky M., Chilkoti A. 2015. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett. 589, 2477–2486. https://doi.org/10.1016/j.febslet.2015.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Lobanov M.Y., Galzitskaya O.V. 2015. How common is disorder? Occurrence of disordered residues in four domains of life. Int. J. Mol. Sci. 16, 19490–19507. https://doi.org/10.3390/ijms160819490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lobanov M.Y., Klus P., Sokolovsky I.V., Tartaglia G.G., Galzitskaya O.V. 2016. Non-random distribution of homo-repeats: Links with biological functions and human diseases. Sci. Rep. 6, 26941. https://doi.org/10.1038/srep26941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lobanov M.Y., Furletova E.I., Bogatyreva N.S., Roytberg M.A., Galzitskaya O.V (2010. Library of disordered patterns in 3D protein structures. PLoS Comput. Biol. 6, e1000958. https://doi.org/10.1371/journal.pcbi.1000958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Forrer P., Binz H.K., Stumpp M.T., Plückthun A. 2004. Consensus design of repeat proteins. ChemBioChem. 5, 183–189. https://doi.org/10.1002/cbic.200300762

    Article  CAS  PubMed  Google Scholar 

  186. Forrer P., Stumpp M.T., Binz H.K., Plückthun A. 2003. A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett. 539, 2–6. https://doi.org/10.1016/s0014-5793(03)00177-7

    Article  CAS  PubMed  Google Scholar 

  187. Main E.R.G., Jackson S.E., Regan L. 2003. The folding and design of repeat proteins: Reaching a consensus. Curr. Opin. Struct. Biol. 13, 482–489. https://doi.org/10.1016/s0959-440x(03)00105-2

    Article  CAS  PubMed  Google Scholar 

  188. Main E.R.G., Lowe A.R., Mochrie S.G.J., Jackson S.E., Regan L. 2005. A recurring theme in protein engineering: The design, stability and folding of repeat proteins. Curr. Opin. Struct. Biol. 15, 464–471. https://doi.org/10.1016/j.sbi.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  189. Javadi Y., Itzhaki L.S. 2013. Tandem-repeat proteins: Regularity plus modularity equals design-ability. Curr. Opin. Struct. Biol. 23, 622–631. https://doi.org/10.1016/j.sbi.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  190. Stumpp M.T., Forrer P., Binz H.K., Pluckthun A. 2015. Repeat protein from collection of repeat proteins comprising repeat modules. US Patent No. 9,006,389. https://patents.google.com/patent/US9006389B2/en

  191. Glasgow A.A., Huang Y.-M., Mandell D.J., Thompson M., Ritterson R., Loshbaugh A.L., Pellegrino J., Krivacic C., Pache R.A., Barlow K.A., Ollikainen N., Jeon D., Kelly M.J.S., Fraser J.S., Kortemme T. 2019. Computational design of a modular protein sense-response system. Science. 366, 1024–1028. https://doi.org/10.1126/science.aax8780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sawyer N., Chen J., Regan L. 2013. All repeats are not equal: A module-based approach to guide repeat protein design. J. Mol. Biol. 425, 1826–1838. https://doi.org/10.1016/j.jmb.2013.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Parmeggiani F., Huang P.-S., Vorobiev S., Xiao R., Park K., Caprari S., Su M., Seetharaman J., Mao L., Janjua H., Montelione G.T., Hunt J., Baker D. 2015. A general computational approach for repeat protein design. J. Mol. Biol. 427, 563–575. https://doi.org/10.1016/j.jmb.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  194. Leaver-Fay A., Tyka M., Lewis S.M., Lange O.F., Thompson J., Jacak R., Kaufman K., Renfrew P.D., Smith C.A., Sheffler W., Davis I.W., Cooper S., Treuille A., Mandell D.J., Richter F., et al. 2011. ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574. https://doi.org/10.1016/B978-0-12-381270-4.00019-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kajander T., Cortajarena A.L., Mochrie S., Regan L. 2007. Structure and stability of designed TPR protein superhelices: Unusual crystal packing and implications for natural TPR proteins. Acta Crystallogr. D: Biol. Crystallogr. 63, 800–811. https://doi.org/10.1107/S0907444907024353

    Article  CAS  Google Scholar 

  196. Mohan K., Ueda G., Kim A.R., Jude K.M., Fallas J.A., Guo Y., Hafer M., Miao Y., Saxton R.A., Piehler J., Sankaran V.G., Baker D., Garcia K.C. 2019. Topological control of cytokine receptor signaling induces differential effects in hematopoiesis. Science. 364, eaav7532. https://doi.org/10.1126/science.aav7532

  197. Plückthun A. 2015. Designed ankyrin repeat proteins (DARPins): Binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 55, 489–511. https://doi.org/10.1146/annurev-pharmtox-010611-134654

    Article  CAS  PubMed  Google Scholar 

  198. Boersma Y.L. 2018. Advances in the application of designed ankyrin repeat proteins (DARPins) as research tools and protein therapeutics. Methods Mol. Biol. 1798, 307–327. https://doi.org/10.1007/978-1-4939-7893-9_23

    Article  CAS  PubMed  Google Scholar 

  199. Schilling J., Schöppe J., Plückthun A. 2014. From DARPins to LoopDARPins: Novel LoopDARPin design allows the selection of low picomolar binders in a single round of ribosome display. J. Mol. Biol. 426, 691–721. https://doi.org/10.1016/j.jmb.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  200. Stumpp M.T., Amstutz P. 2007. DARPins: A true alternative to antibodies. Curr. Opin. Drug Discov. Dev. 10, 153–159. PMID:17436550

    CAS  Google Scholar 

  201. Schweizer A., Rusert P., Berlinger L., Ruprecht C.R., Mann A., Corthésy S., Turville S.G., Aravantinou M., Fischer M., Robbiani M., Amstutz P., Trkola A. 2008. CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics. PLoS Pathog. 4, e1000109. https://doi.org/10.1371/journal.ppat.1000109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zahnd C., Kawe M., Stumpp M.T., de Pasquale C., Tamaskovic R., Nagy-Davidescu G., Dreier B., Schibli R., Binz H.K., Waibel R., Plückthun A. 2010. Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: Effects of affinity and molecular size. Cancer Res. 70, 1595–1605. https://doi.org/10.1158/0008-5472.CAN-09-2724

    Article  CAS  PubMed  Google Scholar 

  203. Reichen C., Madhurantakam C., Plückthun A., Mittl P.R.E. 2014. Crystal structures of designed armadillo repeat proteins: Implications of construct design and crystallization conditions on overall structure. Protein Sci. 23, 1572–1583. https://doi.org/10.1002/pro.2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Madhurantakam C., Varadamsetty G., Grütter M.G., Plückthun A., Mittl P.R.E. 2012. Structure-based optimization of designed Armadillo-repeat proteins. Protein Sci. 21, 1015–1028. https://doi.org/10.1002/pro.2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Reichen C., Madhurantakam C., Hansen S., Grütter M.G., Plückthun A., Mittl P.R.E. 2016. Structures of designed armadillo-repeat proteins show propagation of inter-repeat interface effects. Acta Crystallogr. D: Struct. Biol. 72, 168–175. https://doi.org/10.1107/S2059798315023116

    Article  CAS  Google Scholar 

  206. Ernst P., Honegger A., van der Valk F., Ewald C., Mittl P.R.E., Plückthun A. 2019. Rigid fusions of designed helical repeat binding proteins efficiently protect a binding surface from crystal contacts. Sci. Rep. 9, 16162. https://doi.org/10.1038/s41598-019-52121-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Park K., Shen B.W., Parmeggiani F., Huang P.-S., Stoddard B.L., Baker D. 2015. Control of repeat-protein curvature by computational protein design. Nat. Struct. Mol. Biol. 22, 167–174. https://doi.org/10.1038/nsmb.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rämisch S., Weininger U., Martinsson J., Akke M., André I. 2014. Computational design of a leucine-rich repeat protein with a predefined geometry. Proc. Natl. Acad. Sci. U. S. A. 111, 17875–17880. https://doi.org/10.1073/pnas.1413638111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Stumpp M.T., Forrer P., Binz H.K., Plückthun A. 2003. Designing repeat proteins: Modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J. Mol. Biol. 332, 471–487. https://doi.org/10.1016/s0022-2836(03)00897-0

    Article  CAS  PubMed  Google Scholar 

  210. Ernst P., Plückthun A. 2017. Advances in the design and engineering of peptide-binding repeat proteins. Biol. Chem. 398, 23–29. https://doi.org/10.1515/hsz-2016-0233

    Article  CAS  PubMed  Google Scholar 

  211. Reichen C., Hansen S., Plückthun A. 2014. Modular peptide binding: From a comparison of natural binders to designed armadillo repeat proteins. J. Struct. Biol. 185, 147–162. https://doi.org/10.1016/j.jsb.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  212. Schlehuber S., Skerra A. 2002. Tuning ligand affinity, specificity, and folding stability of an engineered lipocalin variant—a so-called “anticalin”—using a molecular random approach. Biophys. Chem. 96, 213–228. https://doi.org/10.1016/s0301-4622(02)00026-1

    Article  CAS  PubMed  Google Scholar 

  213. Horibe T., Kohno M., Haramoto M., Ohara K., Kawakami K. 2011. Designed hybrid TPR peptide targeting Hsp90 as a novel anticancer agent. J. Transl. Med. 9, 8. https://doi.org/10.1186/1479-5876-9-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cortajarena A.L., Yi F., Regan L. 2008. Designed TPR modules as novel anticancer agents. ACS Chem. Biol. 3, 161–166. https://doi.org/10.1021/cb700260z

    Article  CAS  PubMed  Google Scholar 

  215. Horibe T., Torisawa A., Kohno M., Kawakami K. 2012. Molecular mechanism of cytotoxicity induced by Hsp90-targeted Antp-TPR hybrid peptide in glioblastoma cells. Mol. Cancer. 11, 59. https://doi.org/10.1186/1476-4598-11-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Mejias S.H., Aires A., Couleaud P., Cortajarena A.L. 2016. Designed repeat proteins as building blocks for nanofabrication. Adv. Exp. Med. Biol. 940, 61–81. https://doi.org/10.1007/978-3-319-39196-0_4

    Article  CAS  PubMed  Google Scholar 

  217. Grove T.Z., Regan L., Cortajarena A.L. 2013. Nanostructured functional films from engineered repeat proteins. J. R. Soc. Interface. 10, 20130051. https://doi.org/10.1098/rsif.2013.0051

    Article  PubMed  PubMed Central  Google Scholar 

  218. Carter N.A., Grove T.Z. 2015. Repeat-proteins films exhibit hierarchical anisotropic mechanical properties. Biomacromolecules. 16, 706–714. https://doi.org/10.1021/bm501578j

    Article  CAS  PubMed  Google Scholar 

  219. Mejías S.H., López-Andarias J., Sakurai T., Yoneda S., Erazo K.P., Seki S., Atienza C., Martín N., Cortajarena A.L. 2016. Repeat protein scaffolds: Ordering photo- and electroactive molecules in solution and solid state. Chem. Sci. 7, 4842–4847. https://doi.org/10.1039/c6sc01306f

    Article  PubMed  PubMed Central  Google Scholar 

  220. Couleaud P., Adan-Bermudez S., Aires A., Mejías S.H., Sot B., Somoza A., Cortajarena A.L. 2015. Designed modular proteins as scaffolds to stabilize fluorescent nanoclusters. Biomacromolecules. 16, 3836–3844. https://doi.org/10.1021/acs.biomac.5b01147

    Article  CAS  PubMed  Google Scholar 

  221. Masakari Y., Hara C., Araki Y., Gomi K., Ito K. 2020. Improvement in the thermal stability of Mucor prainii-derived FAD-dependent glucose dehydrogenase via protein chimerization. Enzyme Microb. Technol. 132, 109387. https://doi.org/10.1016/j.enzmictec.2019.109387

    Article  CAS  PubMed  Google Scholar 

  222. Crennell S.J., Garman E.F., Laver W.G., Vimr E.R., Taylor G.L. 1993. Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc. Natl. Acad. Sci. U. S. A. 90, 9852–9856. https://doi.org/10.1073/pnas.90.21.9852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Glanz V.Y., Myasoedova V.A., Grechko A.V., Ore-khov A.N. 2018. Inhibition of sialidase activity as a therapeutic approach. Drug Des. Devel. Ther. 12, 3431–3437. https://doi.org/10.2147/DDDT.S176220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Sacramento C.Q., Jordão A.K., Abrantes J.L., Alves C.M., Marttorelli A., Fintelman-Rodrigues N., de Freitas C.S., de Melo G.R., Cunha A.C., Ferreira V.F., Souza T.M.L. 2020. Neuraminidase from influenza A and B viruses is susceptible to the compound 4-(4-phenyl-1H-1,2,3-triazol-1-yl)-2,2,6,6-tetramethylpiperidine-1-oxyl. Curr. Top. Med. Chem. 20, 132–139. https://doi.org/10.2174/1568026620666191227142433

    Article  CAS  PubMed  Google Scholar 

  225. Voet A.R.D., Noguchi H., Addy C., Simoncini D., Terada D., Unzai S., Park S.-Y., Zhang K.Y.J., Tame J.R.H. 2014. Computational design of a self-assembling symmetrical β-propeller protein. Proc. Natl. Acad. Sci. U. S. A. 111, 15102–15107. https://doi.org/10.1073/pnas.1412768111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Noguchi H., Addy C., Simoncini D., Wouters S., My-lemans B., Van Meervelt L., Schiex T., Zhang K.Y.J., Tame J.R.H., Voet A.R.D. 2019. Computational design of symmetrical eight-bladed β-propeller proteins. IUCrJ. 6, 46–55. https://doi.org/10.1107/S205225251801480X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Mylemans B., Laier I., Kamata K., Akashi S., Noguchi H., Tame J.R.H., Voet A.R.D. 2021. Structural plasticity of a designer protein sheds light on β-propeller protein evolution. FEBS J. 288, 530–545. https://doi.org/10.1111/febs.15347

    Article  CAS  PubMed  Google Scholar 

  228. Urvoas A., Guellouz A., Valerio-Lepiniec M., Graille M., Durand D., Desravines D.C., van Tilbeurgh H., Desmadril M., Minard P. 2010. Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats. J. Mol. Biol. 404, 307–327. https://doi.org/10.1016/j.jmb.2010.09.048

    Article  CAS  PubMed  Google Scholar 

  229. Guellouz A., Valerio-Lepiniec M., Urvoas A., Chevrel A., Graille M., Fourati-Kammoun Z., Desmadril M., van Tilbeurgh H., Minard P. 2013. Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep). PLoS One. 8, e71512. https://doi.org/10.1371/journal.pone.0071512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Valerio-Lepiniec M., Urvoas A., Chevrel A., Guellouz A., Ferrandez Y., Mesneau A., de la Sierra-Gallay I.L., Aumont-Nicaise M., Desmadril M., van Tilbeurgh H., Minard P. 2015. The αRep artificial repeat protein scaffold: A new tool for crystallization and live cell applications. Biochem. Soc. Trans. 43, 819–824. https://doi.org/10.1042/BST20150075

    Article  CAS  PubMed  Google Scholar 

  231. Deng D., Yan C., Pan X., Mahfouz M., Wang J., Zhu J.-K., Shi Y., Yan N. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science. 335, 720–723. https://doi.org/10.1126/science.1215670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Mak A.N.-S., Bradley P., Cernadas R.A., Bogda-nove A.J., Stoddard B.L. 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. 335, 716–719. https://doi.org/10.1126/science.1216211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Flechsig H. 2014. TALEs from a spring–superelasticity of Tal effector protein structures. PLoS One. 9, e109919. https://doi.org/10.1371/journal.pone.0109919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bogdanove A.J., Voytas D.F. 2011. TAL effectors: Customizable proteins for DNA targeting. Science. 333, 1843–1846. https://doi.org/10.1126/science.1204094

    Article  CAS  PubMed  Google Scholar 

  235. Scholze H., Boch J. 2011. TAL effectors are remote controls for gene activation. Curr. Opin. Microbiol. 14, 47–53. https://doi.org/10.1016/j.mib.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  236. Schaper E., Anisimova M. 2015. The evolution and function of protein tandem repeats in plants. New Phytol. 206, 397–410. https://doi.org/10.1111/nph.13184

    Article  CAS  PubMed  Google Scholar 

  237. Moore A.D., Björklund A.K., Ekman D., Bornberg-Bauer E., Elofsson A. 2008. Arrangements in the modular evolution of proteins. Trends Biochem. Sci. 33, 444–451. https://doi.org/10.1016/j.tibs.2008.05.008

    Article  CAS  PubMed  Google Scholar 

  238. Verstrepen K.J., Jansen A., Lewitter F., Fink G.R. 2005. Intragenic tandem repeats generate functional variability. Nat. Genet. 37, 986–990. https://doi.org/10.1038/ng1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Chevanne D., Saupe S.J., Clavé C., Paoletti M. 2010. WD-repeat instability and diversification of the Podospora anserina hnwd non-self recognition gene family. BMC Evol. Biol. 10, 134. https://doi.org/10.1186/1471-2148-10-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Schüler A., Bornberg-Bauer E. 2016. Evolution of protein domain repeats in metazoa. Mol. Biol. Evol. 33, 3170–3182. https://doi.org/10.1093/molbev/msw194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. McElhinny A.S., Kazmierski S.T., Labeit S., Gregorio C.C. 2003. Nebulin: The nebulous, multifunctional giant of striated muscle. Trends Cardiovasc. Med. 13, 195–201. https://doi.org/10.1016/s1050-1738(03)00076-8

    Article  CAS  PubMed  Google Scholar 

  242. Chaudhuri I., Söding J., Lupas A.N. 2008. Evolution of the beta-propeller fold. Proteins. 71, 795–803. https://doi.org/10.1002/prot.21764

    Article  CAS  PubMed  Google Scholar 

  243. Kopec K.O., Lupas A.N. 2013. β-Propeller blades as ancestral peptides in protein evolution. PLoS One. 8, e77074. https://doi.org/10.1371/journal.pone.0077074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Tompa P. 2003. Intrinsically unstructured proteins evolve by repeat expansion. Bioessays. 25, 847–855. https://doi.org/10.1002/bies.10324

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-14-50211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Deryusheva or O. V. Galzitskaya.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: TPR, tetratricopeptide repeat; LRR, leucine-rich repeat; AR, ankyrin repeat; ArmR, armadillo repeat; HEAT (Huntingtin-EF3-PP2A-TOR1), huntingtin, elongation factor 3, protein phosphatase 2A, kinase TOR1; TIM, triose phosphate isomerase; WD40, β-transducin; AFP, antifreeze protein; HMM, hidden Markov model; DARPin, designed ankyrin repeat protein; dArmRP, designed armadillo repeat protein; CTPR, consensus tetratricopeptide repeat protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deryusheva, E.I., Machulin, A.V. & Galzitskaya, O.V. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 55, 683–704 (2021). https://doi.org/10.1134/S0026893321040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321040038

Keywords:

Navigation