Skip to main content
Log in

The Convergence of Alzheimer’s Disease Pathogenesis Concepts

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Advances in the research of molecular factors involved in the onset and progression of Alzheimer’s disease, have led to the creation of several pathogenesis concepts of the most common neurodegenerative disease in the world, and amyloid, cholinergic, and neuroinflammatory hypotheses became leading. Over past twenty years, based on these hypotheses, hundreds of drug prototypes were developed, but none of them were able to stop the development of Alzheimer’s disease. In this review, based on the latest experimental data on structure-function properties of chemically modified amyloid-beta isoforms, the concept of the origin and the mechanism of action of amyloid-beta with isomerized Asp7 residue, as a molecular agent of Alzheimer’s disease pathogenesis, is presented. This concept makes it possible not only to combine the most important aspects of existing hypotheses but also indicates ways of creating agents for fighting Alzheimer’s disease with a principally new mechanism of action, “disease-modifying drugs.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Shelkovnikova T.A., Kulikova A.A., Tsvetkov F.O., Peters O., Bachurin S.O., Bukhman V.L., Ninkina N.N. 2012. Proteinopathies, neurodegenerative disorders with protein aggregation-based pathology. Mol. Biol. (Moscow). 46 (3), 362–374.

    Article  CAS  Google Scholar 

  2. Alzheimer'sassociation (2014. 2014 Alzheimer’s disease facts and figures. Alzheimers Dement. 10 (2), e47‒e92.

  3. Rogaev E.I., Sherrington R., Rogaeva E.A., Levesque G., Ikeda M., Liang Y., Chi H., Lin C., Holman K., Tsuda T., Mar L., Sorbi S., Nacmias B., Piacentini S., Amaducci L., et al. 1995. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 376, 775‒778.

    Article  CAS  PubMed  Google Scholar 

  4. Sherrington R., Rogaev E.I., Liang Y., Rogaeva E.A., Levesque G., Ikeda M., Chi H., Lin C., Li G., Holman K., Tsuda T., Mar L., Foncin J.F., Bruni A.C., Montesi M.P., et al. 1995. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 375, 754‒760.

    Article  CAS  PubMed  Google Scholar 

  5. Querfurth H.W., Laferla F.M. 2010. Alzheimer’s disease. N. Engl. J. Med. 362, 329‒344.

    Article  CAS  PubMed  Google Scholar 

  6. Cummings J.L. 2004. Alzheimer’s disease. N. Engl. J. Med.351, 56‒67.

    Article  CAS  PubMed  Google Scholar 

  7. Karran E., Mercken M., De Strooper B. 2011. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698‒712.

    Article  CAS  PubMed  Google Scholar 

  8. Golde T.E., Dekosky S.T., Galasko D. 2018. Alzheimer’s disease: The right drug, the right time. Science. 362, 1250‒1251.

    Article  CAS  PubMed  Google Scholar 

  9. Müller U.C., Zheng H. 2012. Physiological functions of APP family proteins. Cold Spring Harb. Perspect. Med. 2 (2), a006288.

    Google Scholar 

  10. Roher A.E., Esh C.L., Kokjohn T.A., Castano E.M., Van Vickle G.D., Kalback W.M., Patton R.L., Luehrs D.C., Daugs I.D., Kuo Y.M., Emmerling M.R., Soares H., Quinn J.F., Kaye J., Connor D.J., et al. 2009. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimers Dement. 5, 18‒29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brothers H.M., Gosztyla M.L., Robinson S.R. 2018. The physiological roles of amyloid-β peptide hint at new ways to treat Alzheimer’s disease. Front. Aging Neurosci. 10, 118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang J., Gu B.J., Masters C.L., Wang Y.J. 2017. A systemic view of Alzheimer disease: Insights from amyloid-beta metabolism beyond the brain. Nat. Rev. Neurol. 13, 612‒623.

    Article  CAS  PubMed  Google Scholar 

  13. Cao W., Zheng H. 2018. Peripheral immune system in aging and Alzheimer’s disease. Mol. Neurodegener. 13, 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., Lamb B.T. 2018. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. (NY). 4, 575‒590. https://doi.org/10.1016/j.trci.2018.06.014

    Article  Google Scholar 

  15. Morris G., Berk M., Maes M., Puri B.K. 2019. Could Alzheimer’s disease originate in the periphery and if so how so? Mol. Neurobiol. 56, 406‒434.

    Article  CAS  PubMed  Google Scholar 

  16. Esteras N., Alquezar C., De La Encarnacion A., Martin-Requero A. 2016. Lymphocytes in Alzheimer’s disease pathology: Altered signaling pathways. Curr. Alzheimer Res. 13, 439‒449.

    Article  CAS  PubMed  Google Scholar 

  17. Inyushin M.Y., Sanabria P., Rojas L., Kucheryavykh Y., Kucheryavykh L. 2017. Aβ: Peptide originated from platelets promises new strategy in anti-Alzheimer’s drug development. BioMed. Res. Int.2017, 10.

    Article  CAS  Google Scholar 

  18. Stewart K.L., Radford S.E. 2017. Amyloid plaques beyond Abeta: A survey of the diverse modulators of amyloid aggregation. Biophys. Rev. 9, 405‒419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bush A.I. 2013. The metal theory of Alzheimer’s disease. J. Alzheimer’s Dis. 33, S277‒S281.

    Article  CAS  Google Scholar 

  20. Adlard P.A., Parncutt J.M., Finkelstein D.I., Bush A.I. 2010. Cognitive loss in zinc transporter-3 knock-out mice: A phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J. Neurosci. 30, 1631‒1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedlich A.L., Lee J.-Y., Van Groen T., Cherny R.A., Volitakis I., Cole T.B., Palmiter R.D., Koh J.-Y., Bush A.I. 2004. Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J. Neurosci. 24, 3453‒3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee J.Y., Cole T.B., Palmiter R.D., Suh S.W., Koh J.Y. 2002. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl. Acad. Sci. U. S. A.99, 7705‒7710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lovell M.A., Robertson J.D., Teesdale W.J., Campbell J.L., Markesbery W.R. 1998. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47‒52.

    Article  CAS  PubMed  Google Scholar 

  24. Miller L.M., Wang Q., Telivala T.P., Smith R.J., Lanzirotti A., Miklossy J. 2006. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J. Struct. Biol. 155, 30‒37.

    Article  CAS  PubMed  Google Scholar 

  25. Xie X.M., Smart T.G. 1991. A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature. 349, 521‒524.

    Article  CAS  PubMed  Google Scholar 

  26. Lee M.C., Yu W.C., Shih Y.H., Chen C.Y., Guo Z.H., Huang S.J., Chan J.C.C., Chen Y.R. 2018. Zinc ion rapidly induces toxic, off-pathway amyloid-beta oligomers distinct from amyloid-beta derived diffusible ligands in Alzheimer’s disease. Sci. Rep. 8, 4772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hampel H., Mesulam M.M., Cuello A.C., Farlow M.R., Giacobini E., Grossberg G.T., Khachaturian A.S., Vergallo A., Cavedo E., Snyder P.J., Khachaturian Z.S. 2018. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 141, 1917‒1933.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cummings J., Morstorf T., Zhong K. 2014. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimer’s Res. Ther. 6, 37.

    Article  Google Scholar 

  29. Auld D.S., Kornecook T.J., Bastianetto S., Quirion R. 2002. Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 68, 209‒245.

    Article  CAS  PubMed  Google Scholar 

  30. Perry E.K., Morris C.M., Court J.A., Cheng A., Fairbairn A.F., Mckeith I.G., Irving D., Brown A., Perry R.H. 1995. Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: Possible index of early neuropathology. Neuroscience. 64, 385‒395.

    Article  CAS  PubMed  Google Scholar 

  31. Paterson D., Nordberg A. 2000. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol. 61, 75‒111.

    Article  CAS  PubMed  Google Scholar 

  32. Wu J., Kuo Y.-P., George A.A., Xu L., Hu J., and Lukas R.J. 2004. β-Amyloid directly inhibits human α4β2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J. Biol. Chem. 279, 37842‒37851.

    Article  CAS  PubMed  Google Scholar 

  33. Sabri O., Meyer P.M., Graf S., Hesse S., Wilke S., Becker G.A., Rullmann M., Patt M., Luthardt J., Wagenknecht G., Hoepping A., Smits R., Franke A., Sattler B., Tiepolt S., et al. 2018. Cognitive correlates of alpha4beta2 nicotinic acetylcholine receptors in mild Alzheimer’s dementia. Brain. 141, 1840‒1854.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lawrence J.L.M., Tong M., Alfulaij N., Sherrin T., Contarino M., White M.M., Bellinger F.P., Todorovic C., Nichols R.A. 2014. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment. J. Neurosci. 34, 14210‒14218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mediannikov O., Morozov A. 2014). Peptide compound useful for inhibiting amyloid plaque formation. France Patent 2,966,827, filed October 10, 2010; issued August 22, 2014.

  36. Baker H.F., Ridley R.M., Duchen L.W., Crow T.J., Bruton C.J. 1994. Induction of beta (A4)-amyloid in primates by injection of Alzheimer’s disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol. Neurobiol. 8, 25‒39.

    Article  CAS  PubMed  Google Scholar 

  37. Ridley R.M., Baker H.F., Windle C.P., Cummings R.M. 2006. Very long term studies of the seeding of beta-amyloidosis in primates. J. Neural. Transm. 113, 1243‒1251.

    Article  CAS  PubMed  Google Scholar 

  38. Langer F., Eisele Y.S., Fritschi S.K., Staufenbiel M., Walker L.C., Jucker M. 2011. Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J. Neurosci. 31, 14488‒14495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morales R., Duran-Aniotz C., Castilla J., Estrada L.D., Soto C. 2012. De novo induction of amyloid-β deposition in vivo.Mol. Psychiatry. 17, 1347‒1353.

    Article  CAS  PubMed  Google Scholar 

  40. Rosen R.F., Fritz J.J., Dooyema J., Cintron A.F., Hamaguchi T., Lah J.J., Levine H., 3rd, Jucker M., Walker L.C. 2012. Exogenous seeding of cerebral beta-amyloid deposition in betaAPP-transgenic rats. J. Neurochem. 120, 660‒666.

    Article  CAS  PubMed  Google Scholar 

  41. Watts J.C., Giles K., Grillo S.K., Lemus A., Dearmond S.J., Prusiner S.B. 2011. Bioluminescence imaging of Aβ deposition in bigenic mouse models of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A.108, 2528‒2533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eisele Y.S., Bolmont T., Heikenwalder M., Langer F., Jacobson L.H., Yan Z.X., Roth K., Aguzzi A., Staufenbiel M., Walker L.C., Jucker M. 2009. Induction of cerebral beta-amyloidosis: Intracerebral versus systemic Abeta inoculation. Proc. Natl. Acad. Sci. U. S. A.106, 12926‒12931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eisele Y.S., Obermuller U., Heilbronner G., Baumann F., Kaeser S.A., Wolburg H., Walker L.C., Staufenbiel M., Heikenwalder M., Jucker M. 2010. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science. 330, 980‒982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meyer-Luehmann M., Coomaraswamy J., Bolmont T., Kaeser S., Schaefer C., Kilger E., Neuenschwander A., Abramowski D., Frey P., Jaton A.L., Vigouret J.M., Paganetti P., Walsh D.M., Mathews P.M., Ghiso J., et al. 2006. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 313, 1781‒1784.

    Article  CAS  PubMed  Google Scholar 

  45. Meyer-Luehmann M., Spires-Jones T., Prada C., Garcia-Alloza M., De Calignon A., Rozkalne A., Koenigsknecht-Talboo J., Holtzman D., Bacskai B., Hyman B. 2008. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature. 451, 720‒724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mezias C., Raj A. 2017. Analysis of amyloid-β pathology spread in mouse models suggests spread is driven by spatial proximity, not connectivity. Front. Neurol. 8, 653.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Novotny R., Langer F., Mahler J., Skodras A., Vlachos A., Wegenast-Braun B.M., Kaeser S.A., Neher J.J., Eisele Y.S., Pietrowski M.J., Nilsson K.P., Deller T., Staufenbiel M., Heimrich B., Jucker M. 2016. Conversion of synthetic Abeta to in vivo active seeds and amyloid plaque formation in a hippocampal slice culture model. J. Neurosci. 36, 5084‒5093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jucker M., Walker L.C. 2018. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci. 21, 1341‒1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jaunmuktane Z., Mead S., Ellis M., Wadsworth J.D., Nicoll A.J., Kenny J., Launchbury F., Linehan J., Richard-Loendt A., Walker A.S., Rudge P., Collinge J., Brandner S. 2015. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature. 525, 247‒250.

    Article  CAS  PubMed  Google Scholar 

  50. Purro S.A., Farrow M.A., Linehan J., Nazari T., Thomas D.X., Chen Z., Mengel D., Saito T., Saido T., Rudge P., Brandner S., Walsh D.M., Collinge J. 2018. Transmission of amyloid-beta protein pathology from cadaveric pituitary growth hormone. Nature. 564, 415‒419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Masters C.L., Selkoe D.J. 2012. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harbor Persp. Med. 2, a006262.

    Google Scholar 

  52. Portelius E., Price E., Brinkmalm G., Stiteler M., Olsson M., Persson R., Westman-Brinkmalm A., Zetterberg H., Simon A.J., Blennow K. 2011. A novel pathway for amyloid precursor protein processing. Neurobiol. Aging. 32, 1090‒1098.

    Article  CAS  PubMed  Google Scholar 

  53. Kozin S.A., Zirah S., Rebuffat S., Hui Bon Hoa G., Debey P. 2001. Zinc binding to Alzheimer’s Aβ(1‒16) peptide results in stable soluble complex. Biochem. Biophys. Res. Commun. 285, 959‒964.

    Article  CAS  PubMed  Google Scholar 

  54. Zirah S., Kozin S.A., Mazur A.K., Blond A., Cheminant M., Segalas-Milazzo I., Debey P., Rebuffat S. 2006. Structural changes of region 1–16 of the Alzheimer disease amyloid β-peptide upon zinc binding and in vitro aging. J. Biol. Chem. 281, 2151‒2161.

    Article  CAS  PubMed  Google Scholar 

  55. Nisbet R.M., Nuttall S.D., Robert R., Caine J.M., Dolezal O., Hattarki M., Pearce L.A., Davydova N., Masters C.L., Varghese J.N., Streltsov V.A. 2013. Structural studies of the tethered N-terminus of the Alzheimer’s disease amyloid-β peptide. Proteins: Struct. Funct. Bioinformatics. 81, 1748‒1758.

    Article  CAS  Google Scholar 

  56. Adzhubei A.A., Anashkina A.A., Makarov A.A. 2017. Left-handed polyproline-II helix revisited: Proteins causing proteopathies. J. Biomol. Struct. Dyn. 35, 2701‒2713.

    Article  CAS  PubMed  Google Scholar 

  57. Adzhubei A.A., Sternberg M.J.E., Makarov A.A. 2013. Polyproline-II helix in proteins: Structure and function. J. Mol. Biol. 425, 2100‒2132.

    Article  CAS  PubMed  Google Scholar 

  58. Tsvetkov P.O., Kulikova A.A., Golovin A.V., Tkachev Y.V., Archakov A.I., Kozin S.A., Makarov A.A. 2010. Minimal Zn2+ binding site of amyloid-β. Biophys. J.99, L84‒L86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kozin S.A., Mezentsev Y.V., Kulikova A.A., Indeykina M.I., Golovin A.V., Ivanov A.S., Tsvetkov P.O., Makarov A.A. 2011. Zinc-induced dimerization of the amyloid-β metal-binding domain 1–16 is mediated by residues 11–14. Mol. BioSystems. 7, 1053‒1055.

    Article  CAS  Google Scholar 

  60. Kulikova A.A., Tsvetkov P.O., Indeykina M.I., Popov I.A., Zhokhov S.S., Golovin A.V., Polshakov V.I., Kozin S.A., Nudler E., Makarov A.A. 2014. Phosphorylation of Ser8 promotes zinc-induced dimerization of the amyloid-beta metal-binding domain. Mol. Biosyst. 10, 2590‒2596.

    Article  CAS  PubMed  Google Scholar 

  61. Miller Y., Ma B., Nussinov R. 2010. Zinc ions promote Alzheimer Abeta aggregation via population shift of polymorphic states. Proc. Natl. Acad. Sci. U. S. A.107, 9490‒9495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Istrate A.N., Kozin S.A., Zhokhov S.S., Mantsyzov A.B., Kechko O.I., Pastore A., Makarov A.A., Polshakov V.I. 2016. Interplay of histidine residues of the Alzheimer’s disease Aβ peptide governs its Zn-induced oligomerization. Sci. Rep. 6, 21734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kozin S.A., Barykin E.P., Mitkevich V.A., Makarov A.A. 2018. Antiamyloid therapy of Alzheimer’s disease: Current state and prospects. Biochemistry (Moscow). 83 (9), 1057‒1067.

    CAS  PubMed  Google Scholar 

  64. Kulikova A.A., Makarov A.A., Kozin S.A. 2015. Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease. Mol. Biol. (Moscow). 49 (2), 217–230.

    Article  CAS  Google Scholar 

  65. Mezentsev Y.V., Medvedev A.E., Kechko O.I., Makarov A.A., Ivanov A.S., Mantsyzov A.B., Kozin S.A. 2016. Zinc-induced heterodimer formation between metal-binding domains of intact and naturally modified amyloid-beta species: implication to amyloid seeding in Alzheimer’s disease? J. Biomol. Struct. Dyn. 34, 2317‒2326.

    Article  CAS  PubMed  Google Scholar 

  66. Tsvetkov P.O., Popov I.A., Nikolaev E.N., Archakov A.I., Makarov A.A., Kozin S.A. 2008. Isomerization of the Asp7 residue results in zinc-induced oligomerization of Alzheimer’s disease amyloid β(1‒16) peptide. Chembiochem. 9, 1564‒1567.

    Article  CAS  PubMed  Google Scholar 

  67. Hosoda R., Saido T.C., Otvos L.J., Arai T., Mann D.M.A., Lee V.M.-Y., Trojanowski J.Q., Iwatsubo T. 1998. Quantification of modified amyloid β peptides in Alzheimer disease and Down Syndrome brains. J. Neuropathol. Exp. Neurol. 57, 1089‒1095.

    Article  CAS  PubMed  Google Scholar 

  68. Roher A.E., Lowenson J.D., Clarke S., Wolkow C., Wang R., Cotter R.J., Reardon I.M., Zurcher-Neely H.A., Heinrikson R.L., Ball M.J., Greenberg B.D. 1993. Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J. Biol. Chem. 268, 3072‒3083.

    CAS  PubMed  Google Scholar 

  69. Orpiszewski J., Schormann N., Kluve-Beckerman B., Liepnieks J.J., Benson M.D. 2000. Protein aging hypothesis of Alzheimer disease. FASEB J.14, 1255‒1263.

    Article  CAS  PubMed  Google Scholar 

  70. Moro M.L., Phillips A.S., Gaimster K., Paul C., Mudher A., Nicoll J.A.R., Boche D. 2018. Pyroglutamate and isoaspartate modified amyloid-beta in ageing and Alzheimer’s disease. Acta Neuropathol. Commun.6, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mitkevich V.A., Petrushanko I.Y., Yegorov Y.E., Simonenko O.V., Vishnyakova K.S., Kulikova A.A., Tsvetkov P.O., Makarov A.A., Kozin S.A. 2013. Isomerization of Asp7 leads to increased toxic effect of amyloid-β42 on human neuronal cells. Cell Death Dis. 4, e939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zatsepina O.G., Kechko O.I., Mitkevich V.A., Kozin S.A., Yurinskaya M.M., Vinokurov M.G., Serebryakova M.V., Rezvykh A.P., Evgen’ev M.B., Makarov A.A. 2018. Amyloid-β with isomerized Asp7 cytotoxicity is coupled to protein phosphorylation. Sci. Rep. 8, 3518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Y., Nowotny P., Holmans P., Smemo S., Kauwe J.S., Hinrichs A.L., Tacey K., Doil L., Van Luchene R., Garcia V., Rowland C., Schrodi S., Leong D., Gogic G., Chan J., et al. 2004. Association of late-onset Alzheimer’s disease with genetic variation in multiple members of the GAPD gene family. Proc. Natl. Acad. Sci. U. S. A.101, 15688‒15693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Itakura M., Nakajima H., Kubo T., Semi Y., Kume S., Higashida S., Kaneshige A., Kuwamura M., Harada N., Kita A., Azuma Y.-T., Yamaji R., Inui T., Takeuchi T. 2015. Glyceraldehyde-3-phosphate dehydrogenase aggregates accelerate amyloid-β amyloidogenesis in Alzheimer disease. J. Biol. Chem. 290, 26072‒26087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kozin S.A., Cheglakov I.B., Ovsepyan A.A., Telegin G.B., Tsvetkov P.O., Lisitsa A.V., Makarov A.A. 2013. Peripherally applied synthetic peptide isoAsp7-Aβ(1‒42) triggers cerebral β-amyloidosis. Neurotox. Res.24, 370‒376.

    Article  CAS  PubMed  Google Scholar 

  76. Bu X.L., Xiang Y., Jin W.S., Wang J., Shen L.L., Huang Z.L., Zhang K., Liu Y.H., Zeng F., Liu J.H., Sun H.L., Zhuang Z.Q., Chen S.H., Yao X.Q., Giunta B., et al. 2018. Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies. Mol. Psychiatry. 23, 1948‒1956.

    Article  PubMed  CAS  Google Scholar 

  77. Burwinkel M., Lutzenberger M., Heppner F.L., Schulz-Schaeffer W., Baier M. 2018. Intravenous injection of beta-amyloid seeds promotes cerebral amyloid angiopathy (CAA). Acta Neuropathol. Commun. 6, 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kulikova A.A., Cheglakov I.B., Kukharsky M.S., Ovchinnikov R.K., Kozin S.A., Makarov A.A. 2016. Intracerebral Injection of metal-binding domain of Abeta comprising the isomerized Asp7 increases the amyloid burden in transgenic mice. Neurotox. Res. 29, 551‒557.

    Article  CAS  PubMed  Google Scholar 

  79. Istrate A.N., Tsvetkov P.O., Mantsyzov A.B., Kulikova A.A., Kozin S.A., Makarov A.A., Polshakov V.I. 2012. NMR solution structure of rat Aβ(1‒16): Toward understanding the mechanism of rats’ resistance to Alzheimer’s disease. Biophys. J.102, 136‒143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Edrey Y.H., Medina D.X., Gaczynska M., Osmulski P.A., Oddo S., Caccamo A., Buffenstein R. 2013. Amyloid beta and the longest-lived rodent: The naked mole-rat as a model for natural protection from Alzheimer’s disease. Neurobiol. Aging. 34, 2352‒2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ardiles A.O., Tapia-Rojas C.C., Mandal M., Alexandre F., Kirkwood A., Inestrosa N.C., Palacios A.G. 2012. Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A.109, 13835‒13840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bourdenx M., Dovero S., Thiolat M.-L., Bezard E., Dehay B. 2017. Lack of spontaneous age-related brain pathology in Octodon degus: A reappraisal of the model. Sci. Repts. 7, 45831.

    Article  CAS  Google Scholar 

  83. Steffen J., Krohn M., Paarmann K., Schwitlick C., Brüning T., Marreiros R., Müller-Schiffmann A., Korth C., Braun K., Pahnke J. 2016. Revisiting rodent models: Octodon degus as Alzheimer’s disease model? Acta Neuropathol. Commun.4, 91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tsvetkov P.O., Cheglakov I.B., Ovsepyan A.A., Mediannikov O.Y., Morozov A.O., Telegin G.B., Kozin S.A. 2015. Peripherally applied synthetic tetrapeptides HAEE and RADD slow down the development of cerebral beta-amyloidosis in AbetaPP/PS1 transgenic mice. J. Alzheimers Dis. 46, 849‒853.

    Article  CAS  PubMed  Google Scholar 

  85. Barykin E.P., Petrushanko I.Y., Kozin S.A., Telegin G.B., Chernov A.S., Lopina O.D., Radko S.P., Mitkevich V.A., Makarov A.A. 2018. Phosphorylation of the amyloid-beta peptide inhibits zinc-dependent aggregation, prevents Na,K-ATPase inhibition, and reduces cerebral plaque deposition. Front. Mol. Neurosci. 11, 302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kozin S.A., Barykin E.P., Telegin G.B., Chernov A.S., Adzhubei A.A., Radko S.P., Mitkevich V.A., Makarov A.A. 2018. Intravenously injected amyloid-β peptide with isomerized Asp7 and phosphorylated Ser8 residues inhibits cerebral β-amyloidosis in AβPP/PS1 transgenic mice model of Alzheimer’s disease. Front. Neurosci.12, 518.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work is supported by Russian Science Foundation (grant no. 19-74-30007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kozin.

Ethics declarations

The authors declare no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Khaitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozin, S.A., Makarov, A.A. The Convergence of Alzheimer’s Disease Pathogenesis Concepts. Mol Biol 53, 896–903 (2019). https://doi.org/10.1134/S0026893319060104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319060104

Keywords:

Navigation