Skip to main content
Log in

Inducible Expression of Ran1 and Its GDP- and GTP-Bound Mimetic Mutants Leads to Defects in Amitosis and Cytokinesis with Abnormal Cytoplasmic Microtubule Assembly

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Ran is an evolutionarily conserved GTPase crucial in regulating various cell divisions, including mitosis and meiosis. A previous study showed that the knockdown of RAN1 inhibited macronuclear amitosis with the abnormal organization of intramacronuclear microtubules in Tetrahymena thermophila. This study aimed to further investigate the effects of the inducible expression of wild-type Ran1 (Ran1WT), GTP-bound Ran1-mimetic (Ran1Q70L), and GDP-bound Ran1-mimetic (Ran1T25N) on cytoplasmic microtubule assembly during amitosis of T. thermophila, based on previous studies about their effects on intramacronuclear microtubule. The mutant strains of T. thermophila for inducible expression of Ran1WT/T25N/Q70L by Cd2+ were constructed. The inducibly expressed HA-Ran1Q70L/T25N distributed asymmetrically across the macronuclear envelope during amitosis. At the lower level of inducible expression, only Ran1T25N showed a significant decreasing effect on T. thermophila reproduction, macronuclear amitosis and cytokinesis. At the higher level of inducible expression, Ran1WT/Q70L/T25N inhibited T. thermophila reproduction, macronuclear amitosis and cytokinesis, and the inhibitive effect of Ran1T25N was the most significant. The inducible expression of Ran1WT/Q70L/T25N led to defects in amitosis and cytokinesis with abnormal cytoplasmic microtubule assembly. These results further confirmed the regulatory function of Ran1 on amitosis and suggested a novel role of Ran1 in cytokinesis and the alignment of cytoplasmic microtubules in T. thermophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Osgood E.E., Chu I.T. 1948. The effect of urethane on the nuclear morphology of cells of the granulocyte series as observed in marrow cultures and leukemic blood. Blood. 3, 911‒917.

    CAS  PubMed  Google Scholar 

  2. Stevens D., Schwenk E. 1959. Amitosis in a new ascites tumor. Experientia. 15, 470‒471.

    Article  CAS  PubMed  Google Scholar 

  3. Reshmi S.C., Gollin S.M. 2005. Chromosomal instability in oral cancer cells. J. Dent. Res. 84, 107‒117.

    Article  CAS  PubMed  Google Scholar 

  4. Wong L., Klionsky L., Wickert S., Merriam V., Orias E., Hamilton E.P. 2000. Autonomously replicating macronuclear DNA pieces are the physical basis of genetic coassortment groups in Tetrahymena thermophila. Genetics. 155, 1119‒1125.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Numata O., Fujiu K., Gonda K. 1999. Macronuclear division and cytokinesis in Tetrahymena. Cell Biol. Int. 23, 849‒57.

    Article  CAS  PubMed  Google Scholar 

  6. Fujiu K., Numata O. 2000. Reorganization of microtubules in the amitotically dividing macronucleus of tetrahymena. Cell Motil. Cytoskeleton. 46, 17‒27.

    Article  CAS  PubMed  Google Scholar 

  7. Cervantes M.D., Coyne R.S., Xi X., Yao M.C. 2006. The condensin complex is essential for amitotic segregation of bulk chromosomes, but not nucleoli, in the ciliate Tetrahymena thermophila. Mol. Cell Biol. 26, 4690‒4700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rensen W.M., Mangiacasale R., Ciciarello M., Lavia P. 2008. The GTPase Ran: Regulation of cell life and potential roles in cell transformation. Front. Biosci. 13, 4097‒4121.

    Article  CAS  PubMed  Google Scholar 

  9. Kalab P., Heald R. 2008. The RanGTP gradient—a GPS for the mitotic spindle. J. Cell Sci. 121, 1577‒1586.

    Article  CAS  PubMed  Google Scholar 

  10. Gruss O.J., Carazo-Salas R.E., Schatz C.A., Guarguaglini G., Kast J., Wilm M., Le Bot N., Vernos I., Karsenti E., Mattaj I.W. 2001. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell. 104, 83‒93.

    Article  CAS  PubMed  Google Scholar 

  11. Hetzer M., Gruss O.J., Mattaj I.W. 2002. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat. Cell Biol. 4, E177‒184.

    Article  CAS  PubMed  Google Scholar 

  12. Oh D., Yu C.H., Needleman D.J. 2016. Spatial organization of the Ran pathway by microtubules in mitosis. Proc. Natl. Acad. Sci. U. S. A. 113, 8729‒8734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cesario J., McKim K.S. 2011. RanGTP is required for meiotic spindle organization and the initiation of embryonic development in Drosophila. J. Cell Sci. 124, 3797‒3810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moss D.K., Wilde A., Lane J.D. 2009. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase. J. Cell Sci. 122, 644‒655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carazo-Salas R.E., Guarguaglini G., Gruss O.J., Segref A., Karsenti E., Mattaj I.W. 1999. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature. 400, 178‒181.

    Article  CAS  PubMed  Google Scholar 

  16. Ohkura H. 2015. Meiosis: An overview of key differences from mitosis. Cold Spring Harb. Perspect. Biol. 7, pii: a015859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fleig U., Salus S.S., Karig I., Sazer S. 2000. The fission yeast ran GTPase is required for microtubule integrity. J. Cell Biol. 151, 1101‒1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yudin D., Fainzilber M. 2009. Ran on tracks: Cytoplasmic roles for a nuclear regulator. J. Cell Sci. 122, 587‒593.

    Article  CAS  PubMed  Google Scholar 

  19. Liang H., Xu J., Zhao D., Tian H., Yang X., Liang A. Wang W. 2012. Subcellular localization and role of Ran1 in Tetrahymena thermophila amitotic macronucleus. FEBS. J. 279, 2520‒2533.

    Article  CAS  PubMed  Google Scholar 

  20. Prelich G. 2012. Gene overexpression: Uses, mechanisms, and interpretation. Genetics. 190, 841‒854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mochizuki K., Fine N.A., Fujisawa T., Gorovsky M.A. 2002. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell. 110, 689‒699.

    Article  CAS  PubMed  Google Scholar 

  22. Bischoff F.R., Klebe C., Kretschmer J., Wittinghofer A., Ponstingl H. 1994. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc. Natl. Acad. Sci. U. S. A. 91, 2587‒2591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klebe C., Bischoff F.R., Ponstingl H., Wittinghofer A. 1995. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry. 34, 639‒647.

    Article  CAS  PubMed  Google Scholar 

  24. Mahajan R., Delphin C., Guan T., Gerace L., Melchior F. 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 88, 97‒107.

    Article  CAS  PubMed  Google Scholar 

  25. Rose A., Meier I. 2001. A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. Proc. Natl. Acad. Sci. U. S. A. 98,15377‒15382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao D., Liang H., Xu J., Wang W. 2013. Ran Binding Protein 1 affects macronuclear and micronuclear division in Tetrahymena thermophila. Chin. J. Bio. Mol. Biol. 29, 330‒337.

    CAS  Google Scholar 

  27. Ren X., Xu J., Wang W. 2015. Localization and function of RanGTPase activating protein (RanGAP) from Tetrahymena thermophila. Chin. J. Bio. Mol. Biol. 31, 264‒273.

    CAS  Google Scholar 

  28. Moore W., Zhang C., Clarke P.R. 2002. Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells. Curr. Biol. 12, 1442‒1447.

    Article  CAS  PubMed  Google Scholar 

  29. Duan W., Xu J., Liang A. 2014. Localization and function of regulator of chromosome condensation 1 from Tetrahymena thermophila. Chin. J. Bio. Mol. Biol. 30, 255‒263.

    CAS  Google Scholar 

  30. Silverman-Gavrila R.V. 2006. Ran is required before metaphase for spindle assembly and chromosome alignment and after metaphase for chromosome segregation and spindle midbody organization. Mol. Biol. Cell. 17, 2069‒2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Riddick G., Macara I.G. 2005. A systems analysis of importin-{alpha}-{beta} mediated nuclear protein import. J. Cell Biol. 168, 1027‒1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arai R., Mabuchi I. 2002. F-actin ring formation and the role of F-actin cables in the fission yeast Schizosaccharomyces pombe. J. Cell Sci. 115, 887‒898.

    CAS  PubMed  Google Scholar 

  33. Smith L.G. 2002. Plant cytokinesis: Motoring to the finish. Curr. Biol. 12, R206‒R208.

    Article  CAS  PubMed  Google Scholar 

  34. Steiner A., Rybak K., Altmann M., McFarlane H.E., Klaeger S., Nguyen N., Facher E., Ivakov A., Wanner G., Kuster B., Persson S., Braun P., Hauser M.T., Assaad F.F. 2016. Cell cycle-regulated PLEIADE/AtMAP65-3 links membrane and microtubule dynamics during plant cytokinesis. Plant J. 88, 531‒541.

    Article  CAS  PubMed  Google Scholar 

  35. Wang H., Oliferenko S., Balasubramanian M.K. 2003. Cytokinesis: Relative alignment of the cell division apparatus and the mitotic spindle. Curr. Opin. Cell Biol. 15, 82‒87.

    Article  CAS  PubMed  Google Scholar 

  36. Thery M., Bornens M. 2006. Cell shape and cell division. Curr. Opin. Cell Biol. 18, 648‒657.

    Article  CAS  PubMed  Google Scholar 

Download references

FUNDING

This work was financially supported by grants from the National Natural Scientific Foundation of China [#31501124] and Key Research and Development Project of Shanxi Province (International Cooperation project no. 201803D421087).

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. X. Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H.X., Liu, H.W. Inducible Expression of Ran1 and Its GDP- and GTP-Bound Mimetic Mutants Leads to Defects in Amitosis and Cytokinesis with Abnormal Cytoplasmic Microtubule Assembly. Mol Biol 53, 393–401 (2019). https://doi.org/10.1134/S0026893319030105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319030105

Keywords:

Navigation