Skip to main content
Log in

Evolutionary Stability of Gene Regulatory Networks That Define the Temporal Identity of Neuroblasts

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The ensemble of gap genes is one of the best studied and most conserved gene regulatory networks (GRNs). Gap genes, such as hunchback (hb), Krüppel (Kr), pou-domain (pdm; pdm1 and pdm2), and castor (cas) genes belong to the well-known families Ikaros (IKZF1/hb), Krüppel-like factor (KLF/Kr), POU domain (BRN1/pdm-1, BRN2/pdm-2), and Castor homologs (CASZ1/cas), which are present in all vertebrate genomes and code for site-specific transcription factors. Gap genes form a core of an embryonic segmentation control subnetwork and define the temporal identity of neuroblasts in Drosophila embryos. The key gene regulatory mechanisms whereby the gap genes govern segmentation and neurogenesis are similar. Moreover, the gap genes are evolutionarily conserved in terms of their function as a core of the temporal specification GRN during neurogenesis in vertebrates, including humans. A problem of special interest is to understand the extent of conservation for the molecular mechanisms involved in the regulatory functions of the gap genes. The problem is especially important because human orthologs of the gap gens are crucial for many pathophysiological processes, including tumor growth suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Spatial patterning in embryogenesis is defined as the establishment of gene expression patterns in the entire embryo or its part. The factors expressed from the genes are involved in regulating the subsequent cell differentiation and morphogenetic movements.

  2. Spatial patterning in neurogenesis is the generation of heterogeneous neuronal precursor cells on the basis of their spatial positions in the developing nervous system.

  3. Temporal patterning in neurogenesis is the generation of certain neuronal descendants in response to developmental stage-specific signals. The signals include all of the factors (temporal specification and switching factors) that determine the daughter cell fate based on the time when the cell arises.

  4. A time window is a period of time (usually short) when a particular embryogenetic event takes place within a particular developmental stage.

REFERENCES

  1. Pinnell J., Lindeman P.S., Colavito S., Lowe C., Savage R.M. 2006. The divergent roles of the segmentation gene hunchback. Integr. Comp. Biol. 46, 519–532.

    Article  PubMed  Google Scholar 

  2. John L.B., Yoong S., Ward A.C. 2009. Evolution of the ikaros gene family: Implications for the origins of adaptive immunity. J. Immunol. 182 (8), 4792–4799. https://doi.org/10.4049/jimmunol.0802372

    Article  CAS  PubMed  Google Scholar 

  3. Georgopoulos K., Moore D.D., Derfler B. 1992. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science. 258 (5083), 808–812.

    Article  CAS  PubMed  Google Scholar 

  4. Hahm K., Ernst P., Lo K., Kim G.S., Turck C., Smale S.T. 1994. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell. Biol. 14 (11), 7111–7123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kastner P., Chan S. 2011. Role of Ikaros in T-cell acute lymphoblastic leukemia. World J. Biol. Chem. 2 (6), 108–114.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Konstantinides N., Rossi A.M., Desplan C. 2015. Common temporal identity factors regulate neuronal diversity in fly ventral nerve cord and mouse retina. Neuron. 85 (3), 447–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Virden R.A., Thiele C.J., Liu Z. 2012. Characterization of critical domains within the tumor suppressor CASZ1 required for transcriptional regulation and growth suppression. Mol. Cell. Biol. 32 (8), 1518–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McConnell B.B., Yang V.W. 2010. Mammalian Krüppel-like factors in health and diseases. Physiol. Rev. 90 (4), 1337–1381. https://doi.org/10.1152/physrev.00058.2009

    Article  CAS  PubMed  Google Scholar 

  9. Welstead G.G., Brambrink T., Jaenisch R. 2008. Generating iPS cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4. J. Vis. Exp. pii: 734. https://doi.org/10.3791/734

  10. Isshiki T., Pearson B., Holbrook S., Doe C.Q. 2001. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell. 106, 511–521.

    Article  CAS  PubMed  Google Scholar 

  11. Dominguez M.H., Ayoub A.E., Rakic P. 2013. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb. Cortex. 23 (11), 2632–2643.

    Article  PubMed  Google Scholar 

  12. Gold D.A., Gates R.D., Jacobs D.K. 2014. The early expansion and evolutionary dynamics of POU class genes. Mol. Biol. Evol. 31, 3136–3147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jaeger J. 2011. The gap gene network. Cell. Mol. Life Sci. 68 (2), 243–274.

    Article  CAS  PubMed  Google Scholar 

  14. Cockerill K.A., Billin A.N., Poole S.J. 1993. Regulation of expression domains and effects of ectopic expression reveal gap gene-like properties of the linked pdm genes of Drosophila. Mech. Dev. 41, 139–153.

    Article  CAS  PubMed  Google Scholar 

  15. Li X., Chen Z., Desplan C. 2013. Temporal patterning of neural progenitors in Drosophila. Curr. Topics Dev. Biol. 105, 69–96. http://dx.doi.org/https://doi.org/10.1016/B978-0-12-396968-2.00003-8

    Article  CAS  Google Scholar 

  16. Rübel O., Weber G.H., Keränen S.V.E., Fowlkes C.C., Luengo Hendriks C.L.L., Simirenko L., Shah N.Y., Eisen M.B., Biggin M.D., Hagen H., Sudar D., Malik J., Knowles D.W., Hamann B. 2006. PointCloudXplore: A visualization tool for 3D gene expression data. In: Visualization of Large and Unstructured Data Sets, GI Lecture Notes in Informatics, vol. S-4. Eds. Hagen H., Kerren A., Dannenmann P. Bonn, Germany: Gesellschaftfuer Informatik, pp. 107–117.

    Google Scholar 

  17. Bhat K.M. 1999). Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays. 21, 472–485.

    Article  CAS  PubMed  Google Scholar 

  18. Dessaud E., McMahon A.P., Briscoe J. 2008. Pattern formation in the vertebrate neural tube: A sonic hedgehog morphogen-regulated transcriptional network. Development. 135, 2489–2503.

    Article  CAS  PubMed  Google Scholar 

  19. Doe C.Q. 2008. Neural stem cells: Balancing self-renewal with differentiation. Development. 135, 1575–1587.

    Article  CAS  PubMed  Google Scholar 

  20. Knoblich J.A. 2010. Asymmetric cell division: Recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 11, 849–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin S., Lee T. 2012. Generating neuronal diversity in the Drosophila central nervous system. Dev. Dyn. 241, 57–68.

    Article  PubMed  Google Scholar 

  22. Pearson B.J., Doe C.Q. 2004. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20, 619–647.

    Article  CAS  PubMed  Google Scholar 

  23. Kao C.F., Lee T. 2010. Birth time/order-dependent neuron type specification. Curr. Opin. Neurobiol. 20, 14–21.

    Article  CAS  PubMed  Google Scholar 

  24. Brand A.H., Livesey F.J. 2011. Neural stem cell biology in vertebrates and invertebrates: More alike than different? Neuron. 70, 719–729.

    Article  CAS  PubMed  Google Scholar 

  25. Maurange C. 2012. Temporal specification of neural stem cells: Insights from Drosophila neuroblasts. Curr. Top. Dev. Biol. 98, 199–228.

    Article  PubMed  Google Scholar 

  26. Baek M., Mann R.S. 2009. Lineage and birth date specify motor neuron targeting and dendritic architecture in adult Drosophila. J. Neurosci. 29, 6904–6916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bossing T., Udolph G., Doe C.Q., Technau G.M. 1996. The embryonic central nervous system lineages of Drosophila melanogaster: I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev. Biol. 179, 41–64.

    Article  CAS  PubMed  Google Scholar 

  28. Jefferis G.S., Marin E.C., Stocker R.F., Luo L. 2001. Target neuron prespecification in the olfactory map of Drosophila. Nature. 414, 204–208.

    Article  CAS  PubMed  Google Scholar 

  29. Karcavich R., Doe C.Q. 2005. Drosophila neuroblast 7-3 cell lineage: A model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J. Comp. Neurol. 481, 240–251.

    Article  PubMed  Google Scholar 

  30. Pearson B.J., Doe C.Q. 2003. Regulation of neuroblast competence in Drosophila. Nature. 425, 624–628.

    Article  CAS  PubMed  Google Scholar 

  31. Schmid A., Chiba A., Doe, C.Q. 1999. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development. 126, 4653–4689.

    CAS  PubMed  Google Scholar 

  32. Schmidt H., Rickert C., Bossing T., Vef O., Urban J., Technau G.M. 1997). The embryonic central nervous system lineages of Drosophila melanogaster: 2. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev. Biol. 189, 186–204.

    Article  CAS  PubMed  Google Scholar 

  33. Skeath J.B., Thor S. 2003. Genetic control of Drosophila nerve cord development. Curr. Opin. Neurobiol. 13, 8–15.

    Article  CAS  PubMed  Google Scholar 

  34. Yu H.H., Kao C.F., He Y., Ding P., Kao J.C., Lee T. 2010. A complete developmental sequence of a Drosophila neuronal lineage as revealed by twin-spot MARCM. PLoS Biol. 8, e1000461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaeger J., Manu, Reinitz J. 2012. Drosophila blastoderm patterning. Curr.Opin. Genet. Dev. 22, 533–541.

    Article  CAS  PubMed  Google Scholar 

  36. Skeath, J.B. 1999. At the nexus between pattern formation and cell-type specification: The generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays. 21, 922–931.

    Article  CAS  PubMed  Google Scholar 

  37. Martin-Bermudo M.D., Martinez C., Rodriguez A., Jimenez F. 1991. Distribution and function of the lethal of scute gene product during early neurogenesis in Drosophila. Development. 113, 445–454.

    CAS  PubMed  Google Scholar 

  38. Skeath J.B., Carroll S.B. 1992). Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo. Development. 114, 939–946.

    CAS  PubMed  Google Scholar 

  39. Technau G.M., Berger C., Urbach R. 2006. Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev. Dyn. 235, 861–869.

    Article  CAS  PubMed  Google Scholar 

  40. Hwang H.L., Rulifson E. 2011. Serial specification of diverse neuroblast identities from a neurogenic placode by Notch and Egfr signaling. Development. 138, 2883–2893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kohwi M., Doe C.Q. 2013. Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14, 823–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Broadus J., Skeath J.B., Spana E.P., Bossing T., Technau G., Doe C.Q. 1995. New neuroblast markers and the origin of the aCC/pCC neurons in the Drosophila central nervous system. Mech. Dev. 53, 393–402.

    Article  CAS  PubMed  Google Scholar 

  43. Doe C.Q., Technau G.M. 1993. Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci. 16, 510–514.

    Article  CAS  PubMed  Google Scholar 

  44. Egger B., Chell J.M., Brand A.H. 2008. Insights into neural stem cell biology from flies. Philos. Trans. R. Soc. Lond. B. 363, 39–56.

    Article  CAS  Google Scholar 

  45. Tran K.D., Doe C.Q. 2008. Pdm and Castor close successive temporal identity windows in the NB3‑1 lineage. Development. 135, 3491–3499.

    Article  CAS  PubMed  Google Scholar 

  46. Kambadur R., Koizumi K., Stivers C., Nagle J., Poole S.J., Odenwald W.F. 1998. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev. 12, 246–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baumgardt M., Karlsson D., Terriente J., Diaz-Benjumea F. J., Thor S. 2009. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell. 139, 969–982.

    Article  CAS  PubMed  Google Scholar 

  48. Brody T., Odenwald W.F. 2000. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226, 34–44.

    Article  CAS  PubMed  Google Scholar 

  49. Grosskortenhaus R., Pearson B. J., Marusich A., Doe C.Q. 2005. Regulation of temporal identity transitions in Drosophila neuroblasts. Dev. Cell. 8, 193–202.

    Article  CAS  PubMed  Google Scholar 

  50. Romani S., Jimenez F., Hoch M., Patel N.H., Taubert H., Jackle H. 1996. Kruppel, a Drosophila segmentation gene, participates in the specification of neurons and glial cells. Mech. Dev. 60, 95–107.

    Article  CAS  PubMed  Google Scholar 

  51. Benito-Sipos J., Estacio-Gomez A., Moris-Sanz M., Baumgardt M., Thor S., Diaz-Benjumea F. J. 2010). A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the Drosophila CNS. Development. 137, 3327–3336.

    Article  CAS  PubMed  Google Scholar 

  52. Cleary M.D., Doe C.Q. 2006. Regulation of neuroblast competence: Multiple temporal identity factors specify distinct neuronal fates within a single early competence window. Genes Dev. 20, 429–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grosskortenhaus R., Robinson K.J., Doe C.Q. 2006. Pdm and Castor specify lateborn motor neuron identity in the NB7-1 lineage. Genes Dev. 20, 2618–2627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Novotny T., Eiselt R., Urban J. 2002. Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development. 129, 1027–1036.

    CAS  PubMed  Google Scholar 

  55. Cenci C., Gould A.P. 2005. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development. 132, 3835–3845.

    Article  CAS  PubMed  Google Scholar 

  56. Maurange C., Cheng L., Gould A.P. 2008. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell. 133, 891–902.

    Article  CAS  PubMed  Google Scholar 

  57. Bayraktar O.A., Doe C.Q. 2013. Combinatorial temporal patterning in progenitors expands neural diversity. Nature. 498, 449–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsuji T., Hasegawa E., Isshiki T. 2008. Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development. 135, 3859–3869.

    Article  CAS  PubMed  Google Scholar 

  59. Kao C.F., Yu H.H., He Y., Kao J.C., Lee T. 2012. Hierarchical deployment of factors regulating temporal fate in a diverse neuronal lineage of the Drosophila central brain. Neuron. 73, 677–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang J.D., Dubnicoff T., Liaw G.J., Bai Y., Valentine S.A., Shirokawa J.M., Lengyel J.A., Courey A.J. 1995. Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. Genes Dev. 9, 3177–3189.

    Article  CAS  PubMed  Google Scholar 

  61. Liaw G.J., Rudolph K.M., Huang J.D., Dubnicoff T., Courey A.J., Lengyel J.A. 1995. The torso response element binds GAGA and NTF-1/Elf-1, and regulates tailless by relief of repression. Genes Dev. 9, 3163–3176.

    Article  CAS  PubMed  Google Scholar 

  62. Lloyd A., Sakonju S. 1991. Characterization of two Drosophila POU domain genes, related to Oct-1 and Oct-2, and the regulation of their expression patterns. Mech. Dev. 36, 87–102.

    Article  CAS  PubMed  Google Scholar 

  63. Billin A.N., Cockerill K.A., Poole S.J. 1991. Isolation of a family of Drosophila POU domain genes expressed in early development. Mech. Dev. 34, 75–84.

    Article  CAS  PubMed  Google Scholar 

  64. Nakajima A., Isshiki T., Kaneko K., Ishihara S. 2010. Robustness under functional constraint: The genetic network for temporal expression in Drosophila neurogenesis. PLoS Comput. Biol. 6 (4), e1000760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kanai M.I., Okabe M., Hiromi Y. 2005. seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Dev. Cell. 8, 203–213.

    Article  CAS  PubMed  Google Scholar 

  66. Mettler U., Vogler G., Urban J. 2006. Timing of identity: Spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by Seven‑up and Prospero. Development. 133, 429–437.

    Article  CAS  PubMed  Google Scholar 

  67. Zuo P., Stanojević D., Colgan J., Han K., Levine M., Manley J.L. 1991. Activation and repression of transcription by the gap proteins hunchback and Krüppel in cultured Drosophila cells. Genes Dev. 5 (2), 254–264.

    Article  CAS  PubMed  Google Scholar 

  68. McCarty A.S., Kleiger G., Eisenberg D., Smale S.T. 2003. Selective dimerization of a C2H2 zinc finger subfamily. Mol. Cell. 11 (2), 459–470.

    Article  CAS  PubMed  Google Scholar 

  69. Sauer F., Jäckle H. 1991. Concentration-dependent transcriptional activation or repression by Krüppel from a single binding site. Nature. 353 (6344), 563–566.

    Article  CAS  PubMed  Google Scholar 

  70. Perry M.W., Bothma J.P., Luu R.D., Levine M. 2012. Precision of Hunchback expression in the Drosophila embryo. Curr. Biol. 22, 1–6.

    Article  CAS  Google Scholar 

  71. Kozlov K., Surkova S., Myasnikova E., Reinitz J., Samsonova M. 2012. Modeling of gap gene expression in Drosophila Krüppel mutants. PLoS Comp. Biol. 8, e1002635.

    Article  CAS  Google Scholar 

  72. Surkova S., Golubkova E., Manu, Panok L., Mamon L., Reinitz J., Samsonova M. 2013. Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants. Dev. Biol. 376, 99–112.

    Article  CAS  PubMed  Google Scholar 

  73. Jaeger J., Surkova S., Blagov M., Janssens H., Kosman D., Myasnikova E., Vanario-Alonso C.E., Samsonova M., Sharp D.H., Reinitz J. 2004. Dynamic control of positional information in the early Drosophila blastoderm. Nature. 430, 368–371.

    Article  CAS  PubMed  Google Scholar 

  74. Spirov A.V., Myasnikova E.M., Holloway D. 2016. Sequential construction of a model for modular gene expression control, applied to spatial patterning of the Drosophila gene hunchback. J. Bioinform. Comput. Biol. 14, 1641005.

    Article  CAS  PubMed  Google Scholar 

  75. Ishihara S., Fujimoto K., Shibata T. 2005. Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes. Genes Cells. 10, 1025–1038.

    Article  CAS  PubMed  Google Scholar 

  76. Fujimoto K., Ishihara S., Kaneko K. 2008. Network evolution of body plans. PLoS One. 3, e2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ishihara S., Shibata T. 2008. Mutual interaction in network motifs robustly sharpens gene expression in developmental processes. J. Theor. Biol. 252, 131–144.

    Article  CAS  PubMed  Google Scholar 

  78. Tran K.D., Miller M.R., Doe C.Q. 2010. Recombineering Hunchback identifies two conserved domains required to maintain neuroblast competence and specify early-born neuronal identity. Development. 137, 1421–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kehle J., Beuchle D., Treuheit S., Christen B., Kennison J. A., Bienz M., Muller J. 1998. dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science. 282, 1897–1900.

    Article  CAS  PubMed  Google Scholar 

  80. Li Z., Perez-Casellas L.A., Savic A., Song C., Dovat S. 2011. Ikaros isoforms: The saga continues. World J. Biol. Chem. 2 (6), 140–145.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Arenzana T.A., Schjerven H., Smale S.T. 2015. Regulation of gene expression dynamics during developmental transitions by the Ikaros transcription factor. Genes Dev. 29, 1801–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Peterson K.J., Davidson E.H. 2000. Regulatory evolution and the origin of the bilaterians. Proc. Natl. Acad. Sci. U. S. A. 97, 4430–4433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Levine M., Tjian R. 2003. Transcription regulation and animal diversity. Nature. 424, 147–151.

    Article  CAS  PubMed  Google Scholar 

  84. Arthur W., Jowett T., Panchen A. 1999. Segments, limbs, homology, and co-option. Evol. Dev. 1, 74–76.

    Article  CAS  PubMed  Google Scholar 

  85. Chipman, AD. 2010. Parallel evolution of segmentation by cooption of ancestral gene regulatory networks. Bioessays. 32, 60–70.

    Article  CAS  PubMed  Google Scholar 

  86. Peel A. 2004. The evolution of arthropod segmentation mechanisms. Bioessays. 26, 1108–1116.

    Article  CAS  PubMed  Google Scholar 

  87. Peel A., Chipman A.D., Akam M. 2005. Arthropod segmentation: Beyond the Drosophila paradigm. Nat. Rev. Genet. 6, 905–916.

    Article  CAS  PubMed  Google Scholar 

  88. Peel A.D. 2008. The evolution of developmental gene networks: Lessons from comparative studies on holometabolous insects. Philos. Trans. R. Soc. Lond. B. 363, 1539–1547.

    Article  Google Scholar 

  89. Chipman A.D. 2008. Thoughts and speculations on the ancestral arthropod segmentation pathway. In: Evolving Pathways. Eds. Minelli A., Fusco G. Cambridge, UK: Cambridge Univ. Press, pp. 343–358.

    Google Scholar 

  90. Patel N.H., Hayward D.C., Lall S., Pirkl N.R., DiPietro D., Ball E.E. 2001. Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development. 128, 3459–3472.

    CAS  PubMed  Google Scholar 

  91. Liu P.Z., Kaufman T.C. 2004. Kruppel is a gap gene in the intermediate germband insect Oncopeltus fasciatus and is required for development of both blastoderm and germband-derived segment. Development. 131, 4567–4579.

    Article  CAS  PubMed  Google Scholar 

  92. Mito T., Sarashina I., Zhang H., Iwahashi A., Okamoto H., Miyawaki K., Shinmyo Y., Ohuchi H., Noji S. 2005. Noncanonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development. 132, 2069–2079.

    Article  CAS  PubMed  Google Scholar 

  93. Chipman A.D., Stollewerk A. 2006. Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Dev. Biol. 290, 337–350.

    Article  CAS  PubMed  Google Scholar 

  94. Schwager E.E., Pechmann M., Feitosa N.M., McGregor A.P., Damen W.G.M. 2009. hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Curr. Biol. 19, 1333–1340.

    Article  CAS  PubMed  Google Scholar 

  95. Patel N.H., Ball E.E., Goodman C.S. 1992. Changing role of even-skipped during the evolution of insect pattern formation. Nature. 357, 339–342.

    Article  CAS  PubMed  Google Scholar 

  96. Patel N.H. 1994. Developmental evolution: Insights from studies of insect segmentation. Science. 266, 581–590.

    Article  CAS  PubMed  Google Scholar 

  97. Clyde D.E., Corado M.S.G., Wu X., Pare A., Papatsenko D., Small S. 2003. A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature. 426 (6968), 849–853.

    Article  CAS  PubMed  Google Scholar 

  98. Deutsch J.S. 2004. Segments and parasegments in arthropods: A functional perspective. Bioessays. 26 (10), 1117–1125.

    Article  CAS  PubMed  Google Scholar 

  99. Damen W.G. 2007. Evolutionary conservation and divergence of the segmentation process in arthropods. Dev. Dyn. 236 (6), 1379–1391.

    Article  CAS  PubMed  Google Scholar 

  100. Livesey F.J., Cepko C.L. 2001. Vertebrate neural cell-fate determination: Lessons from the retina. Nat. Rev. Neurosci. 2, 109–118.

    Article  CAS  PubMed  Google Scholar 

  101. Molyneaux B.J., Arlotta P., Menezes J.R., Macklis J.D. 2007. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437.

    Article  CAS  PubMed  Google Scholar 

  102. Jacob J., Maurange C., Gould A.P. 2008. Temporal control of neuronal diversity: Common regulatory principles in insects and vertebrates? Development. 135, 3481–3489.

    Article  CAS  PubMed  Google Scholar 

  103. Okano H., Temple S. 2009. Cell types to order: temporal specification of CNS stem cells. Curr. Opin. Neurobiol. 19, 112–119.

    Article  CAS  PubMed  Google Scholar 

  104. Gaspard N., Bouschet T., Hourez R., Dimidschstein J., Naeije G., van den Ameele J., Espuny-Camacho I., Herpoel A., Passante L., Schiffmann S.N., Gaillard A., Vanderhaeghen P. 2008. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature. 455, 351–357.

    Article  CAS  PubMed  Google Scholar 

  105. Naka H., Nakamura S., Shimazaki T., Okano H. 2008. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat. Neurosci. 11, 1014–1023.

    Article  CAS  PubMed  Google Scholar 

  106. Shen Q., Wang Y., Dimos J.T., Fasano C.A., Phoenix T.N., Lemischka I.R., Ivanova N.B., Stifani S., Morrisey E.E., Temple S. 2006. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751.

    Article  CAS  PubMed  Google Scholar 

  107. Shitamukai A., Konno, D., Matsuzaki F. 2011. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Conduit P.T., Raff J.W. 2010. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20, 2187–2192.

    Article  CAS  PubMed  Google Scholar 

  109. Januschke J., Llamazares S., Reina J., Gonzalez C. 2011. Drosophila neuroblasts retain the daughter centrosome. Nat. Commun. 2, 243.

    Article  CAS  PubMed  Google Scholar 

  110. Wang X.,Tsai J.W., Imai J.H., Lian W.N., Vallee R.B., Shi S.H. 2009. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature. 461, 947–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gao P., Postiglione M.P., Krieger T.G., Hernandez L., Wang C., Han Z., Streicher C., Papusheva E., Insolera R., Chugh K., Kodish O., Huang K., Simons B.D., Luo L., Hippenmeyer S., Shi S.H. 2014. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell. 159, 775–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mattar P., Ericson J., Blackshaw S., Cayouette M. 2015. A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron. 85, 497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Homem C.C.F., Repic M., Knoblich J.A. 2015. Proliferation control in neural stem and progenitor cells. Nat. Rev. Neurosci. 16 (11), 647–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Myasnikova.

Additional information

Translated by T. Tkacheva

Abbreviations: VNC, ventral nerve cord; GRN, gene regulatory network; NB, neuroblast; TF, transcription factor; GMC, ganglion mother cell; CNS, central nervous system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spirov, A.V., Myasnikova, E.M. Evolutionary Stability of Gene Regulatory Networks That Define the Temporal Identity of Neuroblasts. Mol Biol 53, 198–211 (2019). https://doi.org/10.1134/S0026893319020158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319020158

Keywords:

Navigation