Skip to main content
Log in

Treatment with anti-cancer agents results in profound changes in lncRNA expression in colon cancer cells

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Using real-time RT-PCR in combination with bioinformatics, we have shown for the first time that the treatment of HCT-116 and HT-29 colon cancer cells with two anti-cancer agents (doxycycline or 3,3′-diindolylmethane) results in profound changes in the intracellular content of several lncRNAs (by up to 100 times). Since many of these RNAs are secreted by tumors into the bloodstream, the obtained results provide a basis for developing more sensitive protocols for serological monitoring of tumor relapse and metastasis, as well as for search of new anti-cancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

lncRNA:

long noncoding RNA

RNA-Seq:

a protocol for shotgun sequencing of cellular transcriptome

qRT-PCR:

reverse transcription of RNA followed by qPCR

References

  1. Pastori C., Kapranov P., Penas C., et al. 2015. The bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proc. Natl. Acad. Sci. U. S. A. 112, 8326–8331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tani H., Torimura M. 2013. Identification of shortlived long non-coding RNAs as surrogate indicators for chemical stress response. Biochem. Biophys. Res. Commun. 439, 547–551.

    Article  CAS  PubMed  Google Scholar 

  3. Leem S.H., Li X.J., Park M.H., et al. 2015. Genomewide transcriptome analysis reveals inactivation of Wnt/beta-catenin by 3,3′-diindolylmethane inhibiting proliferation of colon cancer cells. Int. J. Oncol. 47, 918–926.

    Article  CAS  PubMed  Google Scholar 

  4. Lamb R., Fiorillo M., Chadwick A., et al. 2015. Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Oncotarget. 6, 14005–14025.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Semov A., Iourtchenco L., Liu L.F., et al. 2012. Diindolilmethane (DIM) selectively inhibits cancer stem cells. Biochem. Biophys. Res. Commun. 424, 45–51.

    Article  CAS  PubMed  Google Scholar 

  6. Qin Y., Zhang Q., Lee S., et al. 2015. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells. Oncotarget. 6, 40667–40679.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Semov A., Iourtchenco L., Liu L.F., Li S., Xu Y., Su X., Muyjnek E., Kiselev V., Alakhov V. 2012. Diindolilmethane (DIM) selectively inhibits cancer stem cells. Biochem. Biophys. Res. Commun. 424, 45–51.

    Article  CAS  PubMed  Google Scholar 

  8. Lerner A., Grafi-Cohen M., Napso T., et al. 2012. The indolic diet-derivative, 3,3′-diindolylmethane, induced apoptosis in human colon cancer cells through upregulation of NDRG1. J. Biomed. Biotechnol. 2012, 256178.

    Article  CAS  PubMed  Google Scholar 

  9. Lukkonen A., Sorsa T., Salo T., et al. 2000. Down-regulation of trypsinogen-2 expression by chemically modified tetracyclines: Association with reduced cancer cell migration. Int. J. Cancer. 15, 577–581.

    Article  Google Scholar 

  10. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  11. Vandesompele J., De Preter K., Pattyn F., et al. 2002. Accurate normalization of real-time quantitative RTPCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1–research0034.11.

  12. Kim S.K., Kim S.Y., Kim J.H., et al. 2014. A nineteen gene-based risk score classifier predicts prognosis of colorectal cancer patients. Mol. Oncol. 8, 1653–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiang J.F., Yin Q.F., Chen T., et al. 2014. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 24, 513–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou K.R., Liu S., Sun W.J., et al. 2017. ChIPBase v2.0: Decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 45 (D1), D43–D50.

    Article  Google Scholar 

  15. Guttman M., Garber M., Levin J.Z., et al. 2010. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shan T.D., Xu J.H., Yu T., et al. 2016. Knockdown of linc-POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Oncotarget. 7, 961–975.

    Article  PubMed  Google Scholar 

  17. Sun J., Ding C., Yang Z., et al. 2016. The long noncoding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial-mesenchymal transition. J. Transl. Med. 14, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xing Z., Lin A., Li C., et al. 2014. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 159, 1110–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ioannidis J.P. 2005. Why most published research findings are false. PLoS Med. 2, e124.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Voorneveld P.W., Kodach L.L., Jacobs R.J., et al. 2015. The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br. J. Cancer. 112, 122–130.

    Article  CAS  PubMed  Google Scholar 

  21. Lian W.J., Liu G., Liu Y.J., et al. 2013. Downregulation of BMP6 enhances cell proliferation and chemoresistance via activation of the ERK signaling pathway in breast cancer. Oncol. Rep. 30, 193–200.

    Article  CAS  PubMed  Google Scholar 

  22. Tong Y.S., Wang X.W., Zhou X.L., et al. 2015. Identification of the long non-coding RNA POU3F3 in plasma as a novel biomarker for diagnosis of esophageal squamous cell carcinoma. Mol. Cancer. 14, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao W., Song M., Zhang J., et al. 2015. Combined identification of long non-coding RNA CCAT1 and HOTAIR in serum as an effective screening for colorectal carcinoma. Int. J. Clin. Exp. Pathol. 8, 14131–14140.

    PubMed  PubMed Central  Google Scholar 

  24. Dong L., Lin W., Qi P., et al. 2016. Circulating long RNAs in serum extracellular vesicles: Their characterization and potential application as biomarkers for diagnosis of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 25, 1158–1166.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Lisitsyn.

Additional information

Original Russian Text © O.L. Zinovieva, E.N. Grineva, M.M. Prokofjeva, D.S. Karpov, G.S. Krasnov, V.S. Prassolov, T.D. Mashkova, N.A. Lisitsyn, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 5, pp. 841–848.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinovieva, O.L., Grineva, E.N., Prokofjeva, M.M. et al. Treatment with anti-cancer agents results in profound changes in lncRNA expression in colon cancer cells. Mol Biol 51, 733–739 (2017). https://doi.org/10.1134/S0026893317050247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317050247

Keywords

Navigation