Skip to main content
Log in

Phylogeny of β-xylanases from Planctomycetes

  • Bioinformatics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Here, we present the results of a computational analysis of a group of hypothetical GH10 endo-β-xylanases from the Planctomycetes, a bacterial phylum with poorly characterized functional capabilities. These proteins are encoded in all analyzed genomes of heterotrophic Planctomycetes and form a phylogenetically distinct and tight cluster. In addition, we determined nucleotide sequences for endo-β-xylanase genes from five strains of Isosphaera-Singulisphaera group of the Planctomycetes. The trees constructed for the 16S rRNA genes and the inferred amino acid sequences of endo-β-xylanases were highly congruent, thus suggesting the vertical transfer of endo-β-xylanase genes and their functional importance in Planctomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lombard V., Ramulu H.G., Drula E., Coutinho P.M., Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495. http://www.cazy.org/

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Naumoff D.G. 2011. Hierarchical classification of glycoside hydrolases. Biochemistry (Moscow). 76, 622–635.

    Article  CAS  Google Scholar 

  3. Reilly P.J. 1981. Xylanases: Structure and function. Basic Life Sci. 18, 111–129.

    CAS  PubMed  Google Scholar 

  4. Kulkarni N., Shendye A., Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411–456.

    Article  CAS  PubMed  Google Scholar 

  5. Subramaniyan S., Prema P. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183, 1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Beg Q.K., Kapoor M., Mahajan L., Hoondal G.S. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56, 326–338.

    Article  CAS  PubMed  Google Scholar 

  7. Subramaniyan S., Prema P. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22, 33–64.

    Article  CAS  PubMed  Google Scholar 

  8. Polizeli M.L., Rizzatti A.C., Monti R., Terenzi H.F., Jorge J.A., Amorim D.S. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591.

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed S., Riaz S., Jamil A. 2009. Molecular cloning of fungal xylanases: An overview. Appl. Microbiol. Biotechnol. 84, 19–35.

    Article  CAS  PubMed  Google Scholar 

  10. Pollet A., Delcour J.A., Courtin C.M. 2010. Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Crit. Rev. Biotechnol. 30, 176–191.

    Article  CAS  PubMed  Google Scholar 

  11. Ward N.L. 2010. Phylum XXV. Planctomycetes, Garrity and Holt 2001, vol. 4 of Bergey’s Manual of Systematic Bacteriology. Eds. Krieg N.R., Staley J.T., Brown D.R., et al. NY: Springer, pp. 879–925.

  12. Fuerst J.A. 1995. The planctomycetes: Emerging models for microbial ecology, evolution and cell biology. Microbiology. 141, 1493–1506.

    Article  CAS  PubMed  Google Scholar 

  13. Fuerst J.A. 2004. Planctomycetes: A phylum of emerging interest for microbial evolution and ecology. World Fed. Cult. Collect. Newsl. 38, 1–11.

    Google Scholar 

  14. Fuerst J.A., Sagulenko E. 2011. Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nature Rev. Microbiol. 9, 403–413.

    Article  CAS  Google Scholar 

  15. Ivanova A.O., Dedysh S.N. 2012. Abundance, diversity, and depth distribution of Planctomycetes in acidic northern wetlands. Front. Microbiol. 3, Art. 5.

  16. Kuypers M.M.M., Sliekers A.O., Lavik G., Schmid M., Jørgensen B.B., Kuenen J.G., Damsté J.S.S., Strous M., Jetten M.S.M. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature. 422, 608–611.

    Article  CAS  PubMed  Google Scholar 

  17. Kulichevskaya I.S., Pankratov T.A., Dedysh S.N. 2006. Detection of representatives of the Planctomycetes in Sphagnum peat bogs by molecular and cultivation approaches. Microbiology (Moscow). 75, 329–335.

    Article  CAS  Google Scholar 

  18. Kulichevskaya I.S., Belova S.E., Kevbrin V.V., Dedysh S.N., Zavarzin G.A. 2007. Analysis of the bacterial community developing in the course of Sphagnum moss decomposition. Microbiology (Moscow). 76, 621–629.

    Article  CAS  Google Scholar 

  19. Kulichevskaya I.S., Ivanova A.O., Belova S.E., Baulina O.I., Bodelier P.L.E., Rijpstra W.I.C., Damsté J.S.S., Zavarzin G.A., Dedysh S.N. 2007. Schlesneria paludicola gen. nov., sp. nov., the first acidophilic member of the order Planctomycetales, from Sphagnum-dominated boreal wetlands. Int. J. Syst. Evol. Microbiol. 57, 2680–2687.

    Article  CAS  PubMed  Google Scholar 

  20. Kulichevskaya I.S., Ivanova A.O., Baulina O.I., Bodelier P.L.E., Damsté J.S.S., Dedysh S.N. 2008. Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int. J. Syst. Evol. Microbiol. 58, 1186–1193.

    Article  CAS  PubMed  Google Scholar 

  21. Kulichevskaya I.S., Baulina O.I., Bodelier P.L.E., Rijpstra W.I.C., Damsté G.S.S., Dedysh S.N. 2009. Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. Int. J. Syst. Evol. Microbiol. 59, 357–364.

    Article  CAS  PubMed  Google Scholar 

  22. Kulichevskaya I.S., Detkova E.N., Bodelier P.L.E., Rijpstra W.I.C., Damsté G.S.S., Dedysh S.N. 2012. Singulisphaera rosea sp. nov., a novel planctomycete from acidic Sphagnum peat, and emended description of the genus Singulisphaera. Int. J. Syst. Evol. Microbiol. 62, 118–123.

    Article  CAS  PubMed  Google Scholar 

  23. Kulichevskaya I.S., Serkebaeva Y.M., Kim Y., Rijpstra W.I.C., Damsté G.S.S., Liesack W., Dedysh S.N. 2012. Telmatocola sphagniphila gen. nov., sp. nov., a novel dendriform planctomycete from northern wetlands. Front. Microbiol. 3, Art. 146.

  24. Kulichevskaya I.S., Ivanova A.A., Belova S.E., Dedysh S.N. 2012. A novel filamentous planctomycete of the Isosphaera-Singulisphaera group isolated from a Sphagnum peat bog. Microbiology (Moscow). 81, 446–452.

    Article  CAS  Google Scholar 

  25. Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208–218.

    Article  CAS  Google Scholar 

  26. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang G., Wang Y., Yang P., Luo H., Huang H., Shi P., Meng K., Yao B. 2010. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl. Microbiol. Biotechnol. 87, 1383–1393.

    Article  CAS  PubMed  Google Scholar 

  28. Wang G., Meng K., Luo H., Wang Y., Huang H., Shi P., Yang P., Zhang Z., Yao B. 2012. Phylogenetic diversity and environment-specific distributions of glycosyl hydrolase family 10 xylanases in geographically distant soils. PLoS ONE. 7, e43480.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Naumoff D.G. 2006. Development of a hierarchical classification of the TIM-barrel type glycoside hydrolases. Proc. Fifth Int. Conf. Bioinformat. Genome Regul. Structure, Novosibirsk, Russia, July 16–22, 2006, vol. 1, pp. 294–298. http://www.bionet.nsc.ru/meeting/bgrs_proceedings/papers/2006/BGRS_2006_V1_067.pdf

    Google Scholar 

  30. Stam M.R., Danchin E.G., Rancurel C., Coutinho P.M., Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19, 555–562.

    Article  CAS  PubMed  Google Scholar 

  31. Gizatullina D.I., Naumoff D.G. 2009. Reclassification of GH13 family of glycoside hydrolases. Proc. Int.. Moscow Conf. Comput. Mol. Biol., July 20–23, 2009, pp. 249–250. http://mccmb.belozersky.msu.ru/2009/MCCMB09_Proceedings.pdf

    Google Scholar 

  32. Naumoff D.G. 2004. Phylogenetic analysis of α-galactosidases of the GH27 family. Mol. Biol. (Moscow). 38, 388–399.

    Article  CAS  Google Scholar 

  33. Naumoff D.G. 2004. The α-galactosidase superfamily: Sequence based classification of α-galactosidases and related glycosidases. Proc. Fourth Int. Conf. Bioinformat. Genome Regul. Structure, Novosibirsk. Russia, July 25–30, 2004, vol. 1, pp. 315–318. http://www.bionet.nsc.ru/meeting/bgrs-proceedings/papers/2004/BGRS-2004-V1-079.pdf

    Google Scholar 

  34. Naumoff D.G., Dedysh S.N. 2012. Lateral gene transfer between the Bacteroidetes and Acidobacteria: The case of α-L-rhamnosidases. FEBS Lett. 586, 3843–3851.

    Article  CAS  PubMed  Google Scholar 

  35. Naumoff D.G. 2013. Multiple lateral transfers and duplications of genes as sources of diversity of α-L-rhamnosidases in Clostridium methylpentosum DSM5476. Microbiology (Moscow). 82, 415–422.

    Article  CAS  Google Scholar 

  36. Naumoff D.G. 2005. GH97 is a new family of glycoside hydrolases, which is related to the α-galactosidase superfamily. BMC Genomics. 6, Art. 112.

  37. Naumoff D.G., Stepuschenko O.O. 2011. Endo-2α-1,4-polygalactosaminidases and their homologs: Structure and evolution. Mol. Biol. (Moscow). 45, 647–657.

    Article  CAS  Google Scholar 

  38. Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K.-H., Glöckner F.O., Rosselló-Móra R. 2010. Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst. Appl. Microbiol. 33, 291–299.

    Article  CAS  PubMed  Google Scholar 

  39. Pagani I., Liolios K., Jansson J., Chen I-M.A., Smirnova T., Nosrat B., Markowitz V.M., Kyrpides N.C. 2012. The Genomes OnLine Database (GOLD) v.4: Status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 40, D571–D579.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Naumoff D.G. 2010. GH101 family of glycoside hydrolases: Subfamily structure and evolutionary connections with other families. J. Bioinform. Comput. Biol. 8, 437–451.

    Article  CAS  PubMed  Google Scholar 

  41. Naumoff D.G. 2013. Bioinformatic analysis of family GH101 of glycoside hydrolases. FEBS J. 280(S1), 540.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Naumoff.

Additional information

Original Russian Text © D.G. Naumoff, A.A. Ivanova, S.N. Dedysh, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 3, pp. 508–517.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumoff, D.G., Ivanova, A.A. & Dedysh, S.N. Phylogeny of β-xylanases from Planctomycetes. Mol Biol 48, 439–447 (2014). https://doi.org/10.1134/S0026893314030145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314030145

Keywords

Navigation