Skip to main content
Log in

Molecular mechanisms of the alternative lipogenic function of insulin

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The review discusses the hypothesis that a major function of insulin is to stimulate triglyceride accumulation in adipose tissue and glycogen synthesis in the liver and muscles. Malfunction of insulin decreases triglyceride storage in adipose tissue, while its extreme activation induces obesity. In either case, low-molecular-weight lipid metabolites, such as oxybutyrates, ketobutyrates, ketone bodies, etc., increase in content in peripheral tissues and are utilized as a preferable substrate in energy production, thus reducing the glucose uptake in cells. Leptin inhibits the lipogenic function of insulin and prevents lipid accumulation, while leptin deficiency or a decrease in leptin activity increases the lipid production and induces obesity. Lipodystrophy decreases leptin secretion by adipocytes and facilitates the lipogenic effect of insulin, but insulin does not stimulate the triglyceride accumulation in adipose tissue in the absence of subcutaneous fat. Lipid metabolites accumulate in peripheral organs and induce lipoatrophic diabetes mellitus. The hypothesis of the alternative mechanisms of insulin functioning is consented with the data obtained in mice with a targeted knockout of the insulin receptor gene in individual organs (muscles, adipose tissue, etc.) and transgenic animals with restored expression of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DM:

diabetes mellitus

References

  1. Pankov Y.A. 2013. Major gene mutations associated with obesity and diabetes mellitus. Mol. Biol. (Moscow). 47, 34–44. doi 10.1134/S0026893313010135

    Article  CAS  Google Scholar 

  2. Shulman G.I. 2000. Cellular mechanism of insulin resistance. J. Clin. Invest. 106, 171–176. doi 10.1172/JCI10583

    Article  PubMed  CAS  Google Scholar 

  3. Randle P.J. 1995. Metabolic fuel selection: general integration at the whole-body level. Proc. Nutrit. Soc. 54, 317–327.

    Article  CAS  Google Scholar 

  4. Randle P.J., Priestman D.A., Mistry S., Halsall A. 1994. Mechanisms modifying glucose oxidation in diabetes. Diabetologia. 37(Suppl. 2), 155–161.

    Article  Google Scholar 

  5. Randle P.J. 1998. Regulatory interaction between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab. Rev. 14, 263–283.

    Article  PubMed  CAS  Google Scholar 

  6. Koller E.A., Accili D., Taylor S. 1995. Mutations in the insulin receptor gene in insulin resistant patients. In: Molecular Endocrinology. Basic Concept and Clinical Correlations. Ed. Weintraub B.D. NY: Raven Press, pp. 283–296.

    Google Scholar 

  7. Atabek M.E., Pirgon O. 2006. Some effect of metformin on insulin resistance in an infant with leprechaunism. J. Pediatr. Endocrinol. Metab. 19, 1257–1261.

    PubMed  CAS  Google Scholar 

  8. Thiel C.T., Knebel B., Knerr I., Sticht H., Muller-Wieland D., Zenker M., Reis A., Dörr H.G., Rauch A. 2008. Two novel mutations in the insulin binding subunit of the insulin receptor gene without insulin binding impairment in a patient with Robson-Mendenhall syndrome. Mol. Genet. Metab. 94, 356–362.

    Article  PubMed  CAS  Google Scholar 

  9. Garg A., Wilson R., Barnes R., Arioglu E., Zaidi Z., Gurakan F., Kocak N., O’Rahilly S., Taylor S.L., Patel S.B., Bowcock A.M. 1999. A gene for congenital generalized lipodistrophy maps to human chromosome 9q34. J. Clin. Endocrinol. Metab. 84, 3390–3394. doi 10.1210/jc.84.9.3390

    Article  PubMed  CAS  Google Scholar 

  10. Agarwal A.K., Arioglu E., De Almeida S., Akkoc N., Taylor S.I., Bowcock A.M., Barnes R.I., Garg A. 2002. AGPAT2 is mutated in congenital generalized lipodystophy linked to chromosome 9q34. Nature Genet. 31, 21–23. doi 10.1038/ng880

    Article  PubMed  CAS  Google Scholar 

  11. Magré J., Delépine M., Khallouf E., Gedde-Dahl T. Jr, Van Maldergem L., Sobel E., Papp J., Meier M., Mégerbandé A., Bachy A., Verloes A., d’Abronso F.H., Seemanova E., Assan R., Baudic N., Boueut C., Czernichow P., Huet F., Grigorescu F., de Kerdanet M., Lacombe D., Labrune D., Lanza M., Loret H., Matsuda F., Navarro J., Nivelon-Chevalier A., Polak M., Rpbert J.J., Tric P., Tubiana-Rufi N., Vigoroux C., Weissenbach J., Savasta S., Maassen J.A., Trygstad O., Bogolho P., Ereitas P., Medina J.L., Bonnicci F., Loyson G., Panz V.R., Raal F.J., O’Rahilly S., Stephenson T., Kahn C.R., Lathrop M., Capeau J. 2001. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nature Genet. 28, 365–370. doi 10.1038/ng585

    Article  PubMed  Google Scholar 

  12. Friedman J.M. 2011. Leptin and the regulation of body weight. Keio J. Med. 60, 1–9.

    Article  PubMed  CAS  Google Scholar 

  13. Oral E.A., Simha V., Ruiz E., Andewelt A., Premkumar A., Snell P., Wagner A.J., DePaoli A.M., Reitman M., Taylor S.I. Gordon P., Garg A.M. 2002. Leptinreplacement therapy for lipodystrophy. N. Engl. J. Med. 346, 570–578.

    Article  PubMed  CAS  Google Scholar 

  14. Petersen K.F., Oral E.A., Dufour S., Befroy D., Ariyan C., Yu C., Cline G.W., DePaoli A.M., Taylor S.I., Gorden P., Shulman G.I. 2002. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350. doi 10.1172/JCI200215001

    PubMed  CAS  Google Scholar 

  15. Ebihara K., Kusakabe T., Hirata M., Masuzaki H., Miyanaga F., Kobayashi N., Tanaka T., Chusho H., Miyazawa T., Hayashi T., Hosoda K., Ogawa Y., DePaoli A.M., Fukushima M., Nakao K. 2007. Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J. Clin. Endocrinol. Metab. 92, 532–541. doi 10.1210/jc.2006-1546

    Article  PubMed  CAS  Google Scholar 

  16. Javor E.D., Cochran E.K., Musso C., Young J.R., DePaoli A.M., Gordon P. 2005. Long-term efficacy of leptin replacement in patients with generalized lipodystrophy. Dibetes. 54, 1994–2002.

    Article  CAS  Google Scholar 

  17. Chan J.L., Lutz K., Cochran E., Huang W., Peters Y., Weyer C., Gordon P. 2011. Clinical effects of long-term metreleptin treatment in patients with lipodystrophy. Endocr. Pract. 17, 922–932. doi 10.4158/EP11229.OR

    Article  PubMed  Google Scholar 

  18. Lungu A.O., Zedah E.., Goodling A., Cochran E., Gordon P. 2012. Insulin resistance is a sufficient basis for hyperandrogenism in lipodystrophic women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 97, 563–567. doi 10.1210/jc.2011-1896

    Article  PubMed  CAS  Google Scholar 

  19. Bertrand J., Lahlou N., Charpentier T.L., Sebag G., Leka S., Polak M., Tubiana-Rufi N., Lacombe D., de Kerdanet M., Huet F., Robert J.-J., Chevenne D., Gressens P., Lévy-Machal C. 2010. Resistance to leptin-replacement therapy in Berardinelli-Seip congenital lipodistrophy: an immunological origin. Eur. J. Endocrinol. 162, 1083–1091. doi 10.1530/EJE-09-1027

    Article  Google Scholar 

  20. Irigoyen O., Cuartero G.B., Castellanos B.R., Locruz T.M., Gila G.A.L., Casado G.I., López H.F., Tomas L.C., Etxebarrial R.I., Garcia L.M.J., Rigual R.M. 2012. Ketoacidosis at onset of type 1 diabetes mellitus in pediatric age in Spain and review of the literature. Pediatr. Endocrinol. Rev. 9, 669–671

    Google Scholar 

  21. Kapellen T., Vogel C., Telleis D., Siekmeyer M., Kiess W. 2012. Treatment of diabetic ketoacidosis (DKA) with 2 different regiments regarding fluid substitution and insulin dosage (0.025 vs. 0.1 units/kg/h). Exp. Clin. Endocrinol. Diabetes. 120, 273–276. doi 10.1055/s-0031-1299706

    Article  PubMed  CAS  Google Scholar 

  22. Stojanovic V., Ihle S. 2011. Role of beta-hydroxybutyric acid in diabetes ketoacidosis. Can. Vet. J. 52, 426–430.

    PubMed  CAS  Google Scholar 

  23. Landsdown A.J., Barton J., Lowes L., Warner J., Williams D., Gregory J.W., Harvey J.W. 2012. Prevalence of ketoacidosis at diagnosis of childhood onset type 1 diabetes in Wales from 1991 to 2009 and effect of a publicity campaign. Diabet. Med. 29, 1506–1509.

    Article  Google Scholar 

  24. Müller G., Ertl J., Gerl M., Preibisch G. 1997. Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J. Biol. Chem. 272, 10585–10593. doi 10.1074/jbc.272.16.10585.

    Article  PubMed  Google Scholar 

  25. Accili D., Drago J., Lee E.J., Johnson M.D., Cool M.H., Salvatore P., Asico L.D., José P.A., Taylor S.I., Westphal H. 1996. Early neonatal death in mice homozygous for null allele of the insulin receptor gene. Nature Genet. 12, 106–109. doi 10.1038/ng0196-106

    Article  PubMed  CAS  Google Scholar 

  26. Joshi R.L., Lamothe B., Cardonnier N., Mesbah K., Monthioux E., Jami J., Bucchini D. 1996. Targeted disruption of the insulin receptor gene in mouse results in neonatal lethality. EMBO J. 15, 1542–1547.

    PubMed  CAS  Google Scholar 

  27. Pagel-Langenickel I., Bao J., Pang L., Sack M.N. 2010. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr. Rev. 31, 25–51. doi 10.1210/er.2009-0003

    Article  PubMed  CAS  Google Scholar 

  28. Brüning J.C., Michael M.D., Winnay J.N., Hayashi T., Hörsch D., Accili D., Goodyear L.J., Kahn C.R. 1998. A muscle-specific insulin receptor knockout exhibits feature of the metabolic syndrome of NIDDM without altered glucose tolerance. Mol. Cell. 2, 559–569. doi 10.1016/S1097-2765 (00)80155-0

    Article  PubMed  Google Scholar 

  29. Blüher M., Michael M.D., Peroni O.D., Ueki K., Carter N., Khan B.B., Khan C.R. 2002. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose in tolerance. Dev. Cell. 3, 25–38. doi 10.1016/S1534-5807(02)00199-5

    Article  PubMed  Google Scholar 

  30. Lauro D., Kido Y., Castle A.L., Zarnowski M.J., Hayashi H., Ebina Y., Accili D. 1998. Impaired glucose tolerance in mice with targeted impairment of insulin action in muscle and adipose tissue. Nature Genet. 20, 294–298. doi 10.1038/3112

    Article  PubMed  CAS  Google Scholar 

  31. Baudry A., Jackerott M., Lamothe B., Kozyrev S.V., Leroux L., Durel B., Saint-Just S., Joshi R.L. 2002. Partial rescue of insulin receptor-deficient mice by transgenic complementation with an activated insulin receptor in the liver. Gene. 299, 219–225. doi 10.1016/S0378-1119(02)01075-2

    Article  PubMed  CAS  Google Scholar 

  32. Okamoto H., Nakae J., Kitamura N., Park B-C. Dragatsis I., Accili D. 2004. Transgenic rescue of insulin receptor-deficient mice. J. Clin. Invest. 114, 214–223. doi 10.1172/JCI200421645

    PubMed  CAS  Google Scholar 

  33. Brüning J.C., Gautam D., Burks D.J., Gillette J., Schubert M., Orban P.C., Klein R., Krone W., Müller-Wieland D., Kahn C.R. 2000. Role of brain insulin receptor in control of body weight and reproduction. Science. 289, 2122–2125. doi 10.1126/science.289.5487.2122

    Article  PubMed  Google Scholar 

  34. Kulkarni R., Brüning J.C., Winnay J.N., Postic C., Magnuson M.A., Khan C.R. 1999. Tissuespecific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 96, 329–339. doi 10.1016/S00928674(00)80546-2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Pankov.

Additional information

Original Russian Text © Yu.A. Pankov, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 6, pp. 891-899.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankov, Y.A. Molecular mechanisms of the alternative lipogenic function of insulin. Mol Biol 47, 776–783 (2013). https://doi.org/10.1134/S0026893313060113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313060113

Keywords

Navigation