Skip to main content
Log in

Protein complex Ppz1p/Hal3p and the efficiency of nonsense suppression in yeasts Saccharomyces cerevisiae

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

It is known that the efficiency of nonsense suppression in yeasts is controlled both genetically and epigenetically. Since many components of translation machinery are represented by phosphoproteins, the efficiency depends, in particular, on the activity of kinases and phosphatases that include the Ppz1p/Hal3p complex. It contains Ppz1p phosphatase, which is a catalytic subunit, and Hal3p that negatively regulates its function. The aim of this work was to study the mechanisms which relate the activity of Ppz1p/Hal3p complex to nonsense suppression efficiency. In this study, we used a genetic approach implicating the analysis of nonsense suppression phenotype of the strains overexpressing HAL3 or PPZ1 genes and also bearing deletions or mutant alleles of genes, which presumably could participate in the manifestation of these overexpressions. We have shown that Hal3p inhibits not only Ppz1p but also the homologous phosphatase Ppz2p. Our data indicate that Ppz2p is also involved in the control of nonsense suppression efficiency. In the course of search for Ppz1p target protein, it was shown that Ppz1p dephosphorylates at least two proteins involved in translation. Moreover, Ppz1p affects the efficiency of nonsense suppression not only due to its phosphatase activity but also due to another mechanism triggered by its interaction with Hsp70 chaperones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Valente L., Kinzy T.G. 2003. Yeast as a sensor of factors affecting the accuracy of protein synthesis. Cell Mol. Life Sci. 60, 2115–2130.

    Article  CAS  PubMed  Google Scholar 

  2. Cox B. 1965. Psi, a cytoplasmic suppressor of super-suppressor in yeast. Heredity. 20, 505–521.

    Article  Google Scholar 

  3. Wickner R.B., Masison D.C., Edskes H.K. 1995. [PSI +] and [URE3 +] as yeast prions. Yeast. 11, 1671–1685.

    Article  CAS  PubMed  Google Scholar 

  4. Galkin A.P., Mironova L.N., Zhuravleva G.A., Inge-Vechtomov S.G. 2006. Yeast prions, mammalian amyloidoses, and the problem of proteomic networks. Genetika. 42, 1558–1570.

    CAS  PubMed  Google Scholar 

  5. Volkov K.V., Aksenova A.Y., Soom M.J., Osipov K.V., Svitin A.V., Kurischko C., Shkundina I.S., Ter-Avanesyan M.D., Inge-Vechtomov S.G., Mironova L.N. 2002. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics. 160, 25–36.

    CAS  PubMed  Google Scholar 

  6. Rogoza O.M., Viktorovskaya O.V., Rodionova S.A., Ivanov M.S., Volkov K.V., Mironova L.N. 2009. Search for genes influencing the maintenance of the [ISP +] prion-like antisuppressor determinant in yeast with the use of an insertion gene library. Mol. Biol. (Moscow). 43, 360–366.

    Article  CAS  Google Scholar 

  7. Hinnebusch A.G. 1993. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol. Microbiol. 10, 215–223.

    Article  CAS  PubMed  Google Scholar 

  8. Zambrano R., Briones E., Remacha M., Ballesta J.P. 1997. Phosphorylation of the acidic ribosomal P proteins in Saccharomyces cerevisiae: A reappraisal. Biochemistry. 36, 14439–14446.

    Article  CAS  PubMed  Google Scholar 

  9. Wang W., Cajigas I.J., Peltz S.W., Wilkinson M.F., González C.I. 2006. Role for Upf2p phosphorylation in Saccharomyces cerevisiae nonsense-mediated mRNA decay. Mol. Cell. Biol. 26, 3390–3400.

    Article  CAS  PubMed  Google Scholar 

  10. Vincent A., Newnam G., Liebman S.W. 1994. The yeast translational allosuppressor, Sal6: A new member of the PP1-like phosphatase family with a long serinerich N-terminal extension. Genetics. 138, 597–608.

    CAS  PubMed  Google Scholar 

  11. de Nadal E., Fadden R.P., Ruiz A., Haystead T., Ariño J. 2001. A role for the Ppz Ser/Thr protein phosphatases in the regulation of translation elongation factor 1Balpha. J. Biol. Chem. 276, 14829–14834.

    Article  PubMed  Google Scholar 

  12. Ivanov M.S., Aksenova A.Yu., Burdaeva Ya.V., Radchenko E.A., Mironova L.N. 2008. Overexpression of gene Ppz1 in the yeast Saccharomyces cerevisiae affects the efficiency of nonsense suppression. Genetika. 44, 171–184.

    Google Scholar 

  13. Aksenova A., Muñoz I., Volkov K., Ariño J., Mironova L. 2007. The Hal3-Ppz1 dependent regulation of nonsense suppression efficiency in yeast and its influence on manifestation of the yeast prion-like determinant [ISP +]. Genes Cells. 12, 435–445.

    Article  CAS  PubMed  Google Scholar 

  14. Ter-Avanesyan M.D., Dagkesamanskaya A.R., Kushnirov V.V., Smirnov V.N. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI +] in the yeast Saccharomyces cerevisiae. Genetics. 137, 671–676.

    CAS  PubMed  Google Scholar 

  15. Kallmeyer A.K., Keeling K.M., Bedwell D.M. 2006. Eukaryotic release factor 1 phosphorylation by CK2 protein kinase is dynamic but has little effect on the efficiency of translation termination in Saccharomyces cerevisiae. Eukaryot. Cell. 5, 1378–1387.

    Article  CAS  PubMed  Google Scholar 

  16. Gietz R.D., Sugino A. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 74, 527–534.

    Article  CAS  PubMed  Google Scholar 

  17. Clotet J., Posas F., de Nadal E., Ariño J. 1996. The NH2-terminal extension of protein phosphatase Ppz1 has an essential functional role. J. Biol. Chem. 271, 26349–26355.

    Article  CAS  PubMed  Google Scholar 

  18. Wach A., Brachat A., Pöhlmann R., Philippsen P. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 10, 1793–1808.

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein A.L., McCusker J.H. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast. 15, 1541–1553.

    Article  CAS  PubMed  Google Scholar 

  20. Zakharov I.A., Kozhin S.A., Kozhina T.N., Fedorova I.V. 1984. Sbornik metodov po genetike drozhzhei-sakharomitsetov (Methods of Saccharomyces Yeast Genetics). Leningrad: Nauka.

    Google Scholar 

  21. Sherman F., Fink G.R., Hincks J.B. 1986. Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  22. Hampsey M. 1997. A review of phenotypes in Saccharomyces cerevisiae. Yeast. 13, 1099–1133.

    Article  CAS  PubMed  Google Scholar 

  23. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  24. Kaiser C., Michaelis S., Mitchell A. 1994. Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  25. Gietz D., St Jean A., Woods R.A., Schiestl R.H. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425.

    Article  CAS  PubMed  Google Scholar 

  26. Inoue H., Nojima H., Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene. 96, 23–28.

    Article  CAS  PubMed  Google Scholar 

  27. Pont-Kingdon G. 2003. Creation of chimeric junctions, deletions, and insertions by PCR. Methods Mol. Biol. 226, 511–516.

    CAS  PubMed  Google Scholar 

  28. de Nadal E., Clotet J., Posas F., Serrano R., Gomez N., Ariño J. 1998. The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc. Natl. Acad. Sci. USA. 95, 7357–7362.

    Article  PubMed  Google Scholar 

  29. Tarassov K., Messier V., Landry C.R., Radinovic S., Serna Molina M.M., Shames I., Malitskaya Y., Vogel J., Bussey H., Michnick S.W. 2008. An in vivo map of the yeast protein interactome. Science. 320, 1465–1470.

    Article  CAS  PubMed  Google Scholar 

  30. Hiraga K., Suzuki K., Tsuchiya E., Miyakawa T. 1993. Cloning and characterization of the elongation factor EF-1 beta homologue of Saccharomyces cerevisiae. EF-1 beta is essential for growth. FEBS Lett. 316, 165–169.

    Article  CAS  PubMed  Google Scholar 

  31. Venturi G.M., Bloecher A., Williams-Hart T., Tatchell K. 2000. Genetic interactions between Glc7, Ppz1 and Ppz2 in Saccharomyces cerevisiae. Genetics. 155, 69–83.

    CAS  PubMed  Google Scholar 

  32. Bailleul P.A., Newnam G.P., Steenbergen J.N., Chernoff Y.O. 1999. Genetic study of interactions between the cytoskeletal assembly protein Sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics. 153, 81–94.

    CAS  PubMed  Google Scholar 

  33. Ariño J. 2002. Novel protein phosphatases in yeast. Eur. J. Biochem. 269, 1072–1077.

    Article  PubMed  Google Scholar 

  34. Allen K.D., Wegrzyn R.D., Chernova T.A., Müller S., Newnam G.P., Winslett P.A., Wittich K.B., Wilkinson K.D., Chernoff Y.O. 2005. Hsp70 chaperones as modulators of prion life cycle: Novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI +]. Genetics. 169, 1227–1242.

    Article  CAS  PubMed  Google Scholar 

  35. Rakwalska M., Rospert S. 2004. The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 9186–9197.

    Article  CAS  PubMed  Google Scholar 

  36. Hatin I., Fabret C., Namy O., Decatur W.A., Rousset J. 2007. Fine-tuning of translation termination efficiency in Saccharomyces cerevisiae involves two factors in close proximity to the exit tunnel of the ribosome. Genetics. 177, 1527–1537.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Mironova.

Additional information

Original Russian Text © M.S. Ivanov, E.A. Radchenko, L.N. Mironova, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 6, pp. 1018–1026.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, M.S., Radchenko, E.A. & Mironova, L.N. Protein complex Ppz1p/Hal3p and the efficiency of nonsense suppression in yeasts Saccharomyces cerevisiae . Mol Biol 44, 907–914 (2010). https://doi.org/10.1134/S0026893310060075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310060075

Keywords

Navigation