Skip to main content
Log in

Kinetics of interactions between apomyoglobin and phospholipid membrane

  • Structural-Functional Analysis of Biopolymers and their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The interaction of apomyoglobin and its mutant forms with phospholipid membranes was studied using tryptophan fluorescence and circular dichroism in the far UV region. It is shown that a negatively charged phospholipid membrane can have a dual effect on the structure of protein molecule upon their interaction. On the one hand, the membrane induces denaturation of the protein native structure to its intermediate state, acting as a moderate denaturing agent. On the other hand, it can stabilize the structure of unfolded protein to the same intermediate state, acting as a moderate structuring agent. The kinetics of interaction between apomyoglobin and its mutant forms and the phospholipid membrane depends on the membrane surface charge. Here the interaction rate depends on the concentration of phospholipids vesicles and stability of protein molecule, which increase with a decrease in the latter. The roles of these factors in the folding of membrane proteins and the choice of the targeted delivery pathways for protein drugs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

WT apoMb:

wild-type apomyoglobin

PLs:

phospholipids

Cm :

the urea concentration in the middle of transition

POPG:

palmitoyl-oleoyl-phosphatidylglycerol

POPC:

palmitoyl-oleoyl-phosphatidylcholine

CD:

circular dichroism

UV:

ultraviolet

N:

native state

I:

intermediate state

U:

unfolded state

Trp:

tryptophan.

References

  1. Booth P.J, Curnow P. 2009. Folding scene investigation: membrane proteins. Curr. Opin. Struct. Biol. 19, 8–13.

    Article  CAS  PubMed  Google Scholar 

  2. Kleinschmidt J.H., Tamm L.K. 1996. Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. Biochemistry. 35, 12993–1300.

    Article  CAS  PubMed  Google Scholar 

  3. Endo T., Eilers M., Schatz G. 1989. Binding of a tightly folded artificial mitochondrial precursor protein to the mitochondrial outer-membrane involves a lipid-mediated conformational change. J. Biol. Chem. 264, 2951–2956.

    CAS  PubMed  Google Scholar 

  4. Glick B., Schatz G. 1991. Import of proteins into mitochondria. Annu. Rev. Genet. 25, 21–44.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao J.-M., London E. 1988. Conformation and model membrane interactions of Diphtheria toxin fragment A. J. Biol. Chem. 263, 15369–15377.

    CAS  PubMed  Google Scholar 

  6. Parker M.W., Tucker A.D., Tsernoglou D., Pattus F. 1990. Insights into membrane insertion based on studies of colicins. Trends Biochem. Sci. 15, 126–129.

    Article  CAS  PubMed  Google Scholar 

  7. Anderluh G., Lakey J.H. 2008. Disparate proteins use similar architectures to damage membranes. Trends Biochem. Sci. 33, 482–490.

    Article  CAS  PubMed  Google Scholar 

  8. Milstein S.J., Leipold H., Sarubbi D., Leone-Bay A., Mlynek G.M., Robinson J.R., Kasimova M., Freire E. 1998. Partially unfolded proteins efficiently penetrate cell membranes — implications for oral drug delivery. J. Control. Release. 53, 259–267.

    Article  CAS  PubMed  Google Scholar 

  9. De Jongh H.H.J., Killian J.A., de Kruijff B. 1992. A water-lipid interface induces a highly dynamic folded state in apo-cytochrome c and cytochrome c, which may represent a common folding intermediate. Biochemistry. 31, 1636–1643.

    Article  PubMed  Google Scholar 

  10. Liang B., Tamm L.K. 2007. Structure of outer membrane protein G by solution NMR spectroscopy. Proc. Natl. Acad. Sci. USA. 104, 16140–16145.

    Article  CAS  PubMed  Google Scholar 

  11. Basova L.V., Tiktopulo E.I., Kashparov I.A., Bychkova V.E. 2004. The conformational state of apomyoglobin in the presence of phospholipid vesicles at neutral pH. Mol. Biol. 38, 272–280).

    Article  CAS  Google Scholar 

  12. Basova L.V., Tiktopulo E.I., Kutyshenko V.P., A. Grant Mauk A.G., Bychkova V.E. 2008. Phospholipid membranes affect tertiary structure of the soluble cytochrome b 5 heme binding domain. Biochim. Biophys. Acta. 1778, 1015–1026.

    Article  CAS  PubMed  Google Scholar 

  13. Baryshnikova (Samatova) E.N., Melnik B.S., Balobanov V.A., Katina N.S., Finkelshtein A.V., Semisotnov G.V., Bychkova V.E. 2009. On the role of some conserved and nonconserved amino acid residues in the transitional state and intermediate of apomyoglobin folding. Mol. Biol. 43, 123–133.

    Article  CAS  Google Scholar 

  14. Dyuysekina A.E., Dolgikh D.A., Samatova (Baryshnikova) E.N., Tiktopulo E.I., Balobanov V.A., Bychkova V.E. 2008. pH-induced equilibrium unfolding of apomyoglobin: Substitutions at conserved Trp14 and Met131 and nonconserved Val17 positions. Biokhimiya. 73, 863–873.

    Google Scholar 

  15. Bryson E.A., Rankin S.E., Carey M., Watts A., Pinheiro T.J. T. 1999. Folding of apocytochrome c in lipid micelles: Formation of alpha-helix precedes membrane insertion. Biochemistry. 38, 9758–9767.

    Article  CAS  PubMed  Google Scholar 

  16. Rankin S.E., Watts A., Roder H., Pinheiro T.J. T. 1999. Folding of apocytochrome c induced by interaction with negatively charged lipid micelles proceeds via collapsed intermediate state. Protein Sci. 8, 381–393.

    CAS  PubMed  Google Scholar 

  17. Kweon D.-H., Kim C.S., Shin Y.-K. 2003. Regulation of neuronal SNARE assembly by membrane. Nature Struct. Biol. 10, 440–447.

    Article  CAS  PubMed  Google Scholar 

  18. Bowen M., Brunger A.T. 2006.Conformation of the synaptobrevin transmembrane domain. Proc. Natl. Acad. Sci. USA. 103, 8378–8383.

    Article  CAS  PubMed  Google Scholar 

  19. Ellena J.F., Liang B., Wiktor M., Stein A., Cafiso D.S., Jahn R., Tamm L.K. 2009. Dynamic structure of lipidbound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation. Proc. Natl. Acad. Sci. USA. 106, 20306–20311.

    Article  CAS  PubMed  Google Scholar 

  20. Davidson W.S., Jonas A., Clayton D.F., George J.M. 1998. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449.

    Article  CAS  PubMed  Google Scholar 

  21. Massey S., Banerjee T., Pande A.H., Taylor M., Tatulian S.A., Teter K. 2009. Stabilization of the tertiary structure of the Cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication. J. Mol. Biol. 393, 1083–1096.

    Article  CAS  PubMed  Google Scholar 

  22. Pande A.H., Moe D., Jamnadas M., Tatulian S.A., Teter K. 2006. The Pertussis toxin S1 is a thermally unstable protein susceptible to degradation by the 20S proteasome. Biochemistry. 45, 13734–13740.

    Article  CAS  PubMed  Google Scholar 

  23. Lesovoy D.M., Bocharov E.V., Lyukmanova E.N., Kosinsky Y.A., Shulepko M.A., Dolgikh D.A., Kirpichnikov M.P., Efremov R.G., Arseniev A.S. 2009. Specific membrane binding of neurotoxin II can facilitate its delivery to acetylcholine receptor. Biophys. J. 97, 2089–2097.

    Article  CAS  PubMed  Google Scholar 

  24. Patel J., Behrens-Kneip S., Holst O., Kleinschmidt J.H. 2009. The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with negative membrane surface potential. Biochemistry. 48, 10235–10245.

    Article  CAS  PubMed  Google Scholar 

  25. Cabiaux V., Brasseur R., Falmagne P., Ruysschaert J.-M., Goormaghtigh E. 1989. Secondary structure of Diphtheria-toxin and its fragments interacting with acidic liposomes studied by polarized infrared-spectroscopy. J. Biol. Chem. 264, 4928–4938.

    CAS  PubMed  Google Scholar 

  26. Jiang J.X., Abrams F.S., London E.I. 1991. Folding changes in membrane-inserted Diphtheria toxin that may play important roles in its translocation. Biochemistry. 30, 3857–3864.

    Article  CAS  PubMed  Google Scholar 

  27. London E. 1992. Diphtheria-toxin-membrane interaction and membrane translocation. Biochim. Biophys. Acta. 1113, 25–51.

    CAS  PubMed  Google Scholar 

  28. Merrill A.R., Cohen F.S., Cramer W.A. 1990. On the nature of the structural change of the colicin-E1 channel peptide necessary for its translocation competent state. Biochemistry. 29, 5829–5836.

    Article  CAS  PubMed  Google Scholar 

  29. van der Goot F.G., Gonzales-Manas J.M., Lakey J.H., Pattus F. 1991. A molten-globule membrane-insertion intermediate of the pore-forming domain of colicin-A. Nature. 354, 408–410.

    Article  PubMed  Google Scholar 

  30. van der Goot F.G., Lakey J.H., Pattus F. 1992. The molten globule intermediate for protein insertion or translocation through membranes. Trends Cell Biol. 2, 343–348.

    Article  PubMed  Google Scholar 

  31. Lakey J.H., Gonzalez-Manas J.M., van der Goot F.G., Pattus F. 1992. The membrane insertion of colicins. FEBS Lett. 307, 26–29.

    Article  CAS  PubMed  Google Scholar 

  32. Vecsey-Semjen B., Moellby R., van der Goot F.G. 1996. Partial C-terminal unfolding is required for channel formation by staphylococcal α-toxin. J. Biol. Chem. 271, 8655–8660.

    Article  CAS  PubMed  Google Scholar 

  33. Day P.J., Pinheiro T.J.T., Roberts L.M., Lord J.M. 2002. Binding of ricin A-chain to negatively charged phospholipids vesicles leads to protein structural changes and destabilizes the lipid bilayer. Biochemistry. 41, 2836–2843.

    Article  CAS  PubMed  Google Scholar 

  34. Mayerhofer P.U., Cook J.P., Wahlman J., Pinheiro T.J.T., Moore K.A.H., Lord J.M., Johnson A.E., Roberts L.M. 2009. Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37°C. J. Biol. Chem. 284, 10232–10242.

    Article  CAS  PubMed  Google Scholar 

  35. Mach H., Middaugh C.R. 1995. Interaction of partially structured states of acidic fibroblast growth factor with phosphor-lipid membranes. Biochemistry. 34, 9913–9920.

    Article  CAS  PubMed  Google Scholar 

  36. Ugolev A.M. Fiziologiya i patologiya pristenochnogo (kontaktnogo) pishchevareniya (Physiology and Pathology of Contact (Membrane) Digestion), Leningrad: Nauka.

  37. Stroll B.R., Leipold H.R., Milstein S., Edwards D.A. 2000. A mechanistic analysis of carrier-mediated oral delivery of protein therapeutics. J. Control. Release. 64, 217–228.

    Article  Google Scholar 

  38. Lennernas H. 2007. Modelling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: Experience from in vivo dissolution and permeability studies in humans. Curr. Drug Metab. 8, 645–657.

    Article  PubMed  Google Scholar 

  39. Wawrezinieck A., Pean J.M., Wuethrich P., Benoit J.P. 2008. Oral bioavailability and drug/carrier particulate systems. Med. Sci. (Paris) 24, 659–664.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Balobanov.

Additional information

Original Russian Text © V.A. Balobanov, N.B. Il’ina, N.S. Katina, I.A. Kashparov, D.A. Dolgikh, V.E. Bychkova, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 4, pp. 708–717.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balobanov, V.A., Il’ina, N.B., Katina, N.S. et al. Kinetics of interactions between apomyoglobin and phospholipid membrane. Mol Biol 44, 624–632 (2010). https://doi.org/10.1134/S0026893310040187

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310040187

Key words

Navigation