Skip to main content
Log in

Functional analysis of the HERV-K LTR residing in the KIAA1245/NBPF subfamily genes

  • Genomics and Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) might affect transcription regulation of neighboring genes. In our previous study, we showed that the solitary LTR residing in the KIAA1245/NBPF gene subfamily displayed high enhancer activity in a transformed embryonal carcinoma cell line Tera 1. In this study, we performed a functional dissection of the LTR and studied its deletion series. Using transient transfection assay, we confirmed the ability of the LTR to drive the expression of the luciferase reporter gene in Tera1 cells. At the same time, in two other transformed cell lines tested, NGP and NT2/D1, the full-size LTR and its fragments showed no or low enhancer activity, thus demonstrating cell type specificity of the LTR enhancer activity. The functional dissection of the LTR revealed a specific region within the U3 part appeared to be responsible for the enhancer properties. We showed that the identified enhancer was able to work in a highly cell type specific manner. The data obtained are in line with the hypothesis suggesting that KIAA1245/NBPF LTR may affect the transcription regulation of the KIAA1245/NBPF subfamily genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LTR:

long terminal repeat

HERV-K:

Human endogenous retrovirus of the K

NBPF:

Neuroblastoma breakpoint family

NCBI:

National Center for Biotechnology Information of the USA

UCSC:

University of California Santa Cruz

References

  1. International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature. 409(6822), 860–921.

    Article  Google Scholar 

  2. Tristem M. 2000. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J. Virol. 74, 3715–3730.

    Article  PubMed  CAS  Google Scholar 

  3. Gifford R., Tristem M. 2003. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes. 26(3), 291–315.

    Article  PubMed  CAS  Google Scholar 

  4. Abrink M., Larsson E., Hellman L. 1998. Demethylation of ERV3, an endogenous retrovirus regulating the Kruppel-related zinc finger gene H-plk, in several human cell lines arrested during early monocyte development. DNA Cell Biol. 17, 27–37.

    Article  PubMed  CAS  Google Scholar 

  5. Di Cristofano A., Strazullo M., Longo L., La Mantia G. 1995. Characterization and genomic mapping of the ZNF80 locus: Expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retroviral family. Nucleic Acids Res. 23, 2823–2830.

    Article  PubMed  Google Scholar 

  6. Calomme C., Dekoninck A., Nizet S., Adam E., Nguyên T.L., van Den Broeke A., Willems L., Kettmann R., Burny A., van Lint C. 2004. Overlapping CRE and E box motifs in the enhancer sequences of the bovine leukemia virus 5′ long terminal repeat are critical for basal and acetylation-dependent transcriptional activity of the viral promoter: implications for viral latency. J. Virol. 78(24), 13848–13864.

    Article  PubMed  CAS  Google Scholar 

  7. Huh J.W., Kim D.S., Kang D.W., Ha H.S., Ahn K., Noh Y.N., Min D.S., Chang K.T., Kim H. S. 2008. Transcriptional regulation of GSDML gene by antisense-oriented HERV-H LTR element. Arch. Virol. 153(6), 1201–1205.

    Article  PubMed  CAS  Google Scholar 

  8. Buzdin A., Kovalskaya-Alexandrova E., Gogvadze E., Sverdlov E. 2006. At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J. Virol. 80(21), 10752–10762.

    Article  PubMed  CAS  Google Scholar 

  9. Sverdlov E.D. 1998. Perpetually mobile footprints of ancient infections in human genome. FEBS Lett. 428(1-2), 1–6.

    Article  PubMed  CAS  Google Scholar 

  10. Sverdlov E.D. 2000. Retroviruses and primate evolution. Bioessays. 22, 161–171.

    Article  PubMed  CAS  Google Scholar 

  11. Leib-Mosch C., Haltmeier M., Werner T., Geigl E.M., Brack-Werner R., Francke U., Erfle V., Hehlmann R. 1993. Genomic distribution and transcription of solitary HERV-K LTRs. Genomics. 18, 261–269.

    Article  PubMed  CAS  Google Scholar 

  12. Lower R., Lower J., Kurth R. 1996. The viruses in all of us: Characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA. 93, 5177–5184.

    Article  PubMed  CAS  Google Scholar 

  13. Tonjes R.R., Löwer R., Boller K., Denner J., Hasenmaier B., Kirsch H., König H., Korbmacher C., Limbach C., Lugert R., Phelps RC., Scherer J., Thelen K., Löwer J., Kurth R. 1996. HERV-K: The biologically most active human endogenous retrovirus family. J. AIDS Hum. Retrovirol. 13Suppl 1, S261–S267.

    Google Scholar 

  14. Domansky A.N., Kopantzev E.P., Snezhkov E.V., Lebedev Y.B., Leib-Mosch C., Sverdlov E.D. 2000. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 472(2–3), 191–195.

    Article  PubMed  CAS  Google Scholar 

  15. Ruda V.M., Akopov S.B., Trubetskoy D.O., Manuylov N.L., Vetchinova A.S., Zavalova L.L., Nikolaev L.G., Sverdlov E.D. 2004. Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR. Virus Res. 104(1), 11–16.

    Article  PubMed  CAS  Google Scholar 

  16. Domanskii A.N., Akopov S.B., Lebedev Iu.B., Nikolaev L.G., Sverdlov E.D. Enhancer activity of solitary long terminal repeat of the human endogenous retrovirus of the HERV-K family. Bioorg. Khim. 28(4), 341–345.

  17. Schon U., Seifarth W., Baust C., Hohenadl C., Erfle V., Leib-Mosch C. 2001. Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology. 279(1), 280–291.

    Article  PubMed  CAS  Google Scholar 

  18. Medstrand P., Landry J.R., Mager D.L. 2001. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J. Biol. Chem. 276, 1896–1903.

    Article  PubMed  CAS  Google Scholar 

  19. Vinogradova T.V., Zhulidov P.A., Illarionova A.E., Sverdlov E.D. 2002. A new KIAA1245 gene family with or without HERV-K LTRs in their introns. Bioorg. Khim. 28(4), 346–350.

    PubMed  CAS  Google Scholar 

  20. Vandepoele K., van Roy N., Staes K., Speleman F., van Roy F. 2005. A novel gene family NBPF: Intricate structure generated by gene duplications during primate evolution. Mol. Biol. Evol. 2005. 22(11), 2265–2274.

    Article  PubMed  CAS  Google Scholar 

  21. Illarionova A.E., Vinogradova T.V., Sverdlov E.D. 2007. Only those genes of the KIAA1245 gene subfamily that contain HERV(K) LTRs in their introns are transcriptionally active. Virology. 358(1), 39–47.

    Article  PubMed  CAS  Google Scholar 

  22. Elkahloum A.G., Bittner M., Hoskins K., Gemmill R., Meltzer P.S. 1996. Molecular cytogenetic characterization and physical mapping of 12q13-15 amplification in human cancers. Genes Chromosomes Cancer. 17(4), 205–214.

    Article  Google Scholar 

  23. Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  24. McGee-Estrada K., Fan H. 2006. In vivo and in vitro analysis of factor binding sites in Jaagsiekte sheep retrovirus long terminal repeat enhancer sequences: Toles of HNF-3, NF-I, and C/EBP for activity in lung epithelial cells. J. Virol. 80(1), 332–341.

    Article  PubMed  CAS  Google Scholar 

  25. McGee-Estrada K., Fan H. 2007. Comparison of LTR enhancer elements in sheep beta retroviruses: Insights into the basis for tissue-specific expression. Virus Genes. 35(2), 303–312.

    Article  PubMed  CAS  Google Scholar 

  26. Ha H.S., Huh J.W., Kim D.S., Kang D.W., Cho B.W., Kim H.S. 2007. Promoter activity of the long terminal repeats of porcine endogenous retroviruses of the Korean domestic pig. Mol. Cells. 24(1), 148–151.

    PubMed  CAS  Google Scholar 

  27. Akopov S.B., Chernov I.P., Vetchinova A.S., Bulanenkova S.S., Nikolaev L.G. 2007. Identification and mapping of cis-regulatory elements within long genomic sequences. Mol. Biol. 41, 717–722.)

    Article  CAS  Google Scholar 

  28. Boshart M., Weber F., Jahn G., Dorsch-Häsler K., Fleckenstein B., Schaffner W. 1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell. 41(2), 521–530.

    Article  PubMed  CAS  Google Scholar 

  29. Hollon T., Yoshimura F. 1989. Mapping of functional regions of murine retrovirus long terminal repeat enhancers: enhancer domains interact and are not independent in their contributions to enhancer activity. J. Virol. 63(8), 3353–3361.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Abrarova.

Additional information

Original Russian Text © N.D. Abrarova, E.A. Stoukacheva, V.V. Pleshkan, T.V. Vinogradova, E.D. Sverdlov, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 4, pp. 627–634.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrarova, N.D., Stoukacheva, E.A., Pleshkan, V.V. et al. Functional analysis of the HERV-K LTR residing in the KIAA1245/NBPF subfamily genes. Mol Biol 44, 552–558 (2010). https://doi.org/10.1134/S0026893310040084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310040084

Key words

Navigation