Skip to main content
Log in

Microbial Communities Associated with the White Sea Red Algae as a Source of Xylanolytic Microorganisms

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms associated with algae and able to utilize complex substrates (e.g., plant heteropolysaccharides) may be important producers of hydrolytic enzymes. The microbial communities of the red algae Corallina sp. and Phyllophora sp. sampled in the Kandalaksha Gulf basin of the White Sea were analyzed using high-throughput sequencing of the V4-variable region of the 16S rRNA gene. The dominant phyla in microbiomes of both samples were Pseudomonadota and Bacteroidota (GTDB classification, https://gtdb.ecogenomic.org/). For the Corallina sp. sample, dominance of the Vibrio, Agarivorans, and Photobacterium genera was shown, while Granulosicoccus and Aliivibrio dominated in the Phyllophora sp. sample. The analyzed red macroalgae with associated microbiota were used as an inocula to obtain microbial enrichment cultures growing on β-1,4-xylan or β-1,3-glucan (curdlan). It was shown that, similar to environmental samples Pseudomonadota and Bacteroidota phyla representatives were prevalent in all enrichment cultures. However, unlike the environmental samples, in the enrichment cultures the dominant genera were Marinomonas, Reinekea, Polaribacter, and Pseudoalteromonas. The latter, as well as the representatives of Vibrio sp., were isolated in pure cultures for which the xylanolytic activity was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Araki, T., Tani, S., Maeda, K., Hashikawa, S., Nakagawa, H., and Morishita, T., Purification and characterization of β-1,3-xylanase from a marine bacterium, Vibrio sp. XY-214, Biosci. Biotechnol. Biochem., 1999, vol. 63, pp. 2017‒2019.

    Article  CAS  PubMed  Google Scholar 

  2. Avcı, B., Hahnke, R.L., Chafee, M., Fischer, T., Gruber-Vodicka, H., Tegetmeyer, H.E., Harder, J., Fuchs, B.M., Amann, R.I., and Teeling, H., Genomic and physiological analyses of ‘Reinekea forsetii’ reveal a versatile opportunistic lifestyle during spring algae blooms, Environ. Microbiol., 2017, vol. 19, pp. 1209‒1221.

    Article  PubMed  Google Scholar 

  3. Avcı, B., Krüger, K., Fuchs, B.M., Teeling, H., and Amann, R.I., Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms, ISME J., 2020, vol. 14, pp. 1369‒1383.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 2019, vol. 37, pp. 852–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brodie, J., Williamson, C., Barker, G.L., Walker, R.H., Briscoe, A., and Yallop, M., Characterising the microbiome of Corallina officinalis, a dominant calcified intertidal red alga, FEMS Microbiol. Ecol., 2016, vol. 92, p. fiw110.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chikin, S.M., Tarasova, N.A., Saralov, A.I., and Bannikova, O.M., The distribution of bacterio- and mesozooplankton in the coastal waters of the White and Barents seas, Microbiology (Moscow), 2003, vol. 72, pp. 213‒220.

    Article  CAS  Google Scholar 

  7. Deniaud, E., Quemener, B., Fleurence, J., and Lahaye, M., Structural studies of the mix-linked β-(1 → 3)/β-(1 → 4)-D-xylans from the cell wall of Palmaria palmata (Rhodophyta), Int. J. Biol. Macromol., 2003, vol. 33, pp. 9‒18.

    Article  CAS  PubMed  Google Scholar 

  8. Ducklow, H.W., Production and fate of bacteria in the oceans, Bioscience, 1983, vol. 33, pp. 494‒501.

    Article  Google Scholar 

  9. Fisher, R.A., Corbet, A.S., and Williams, C.B., The relation between the number of species and the number of individuals in a random sample of an animal population, J. A-nim. Ecol., 1943, vol. 12, pp. 42‒58.

    Article  Google Scholar 

  10. Gaitan-Espitia, J.D. and Schmid, M., Diversity and functioning of Antarctic seaweed microbiomes, in Antarctic Seaweeds: Diversity, Adaptation and Ecosystem Services, Gómez, I. and Huovinen, P., Eds., Cham: Springer, 2020, pp. 279‒291.

    Google Scholar 

  11. Gavrilov, S.N., Korzhenkov, A.A., Kublanov, I.V., Bargiela, R., Zamana, L.V., Popova, A.A., Peter, S.V., Golyshin, N., and Golyshina, O.V., Microbial communities of polymetallic deposits’ acidic ecosystems of continental climatic zone with high temperature contrasts, Front. Microbiol., 2019, p. 1573.

  12. Gavrilov, S.N., Stracke, C., Jensen, K., Menzel, P., Kallnik, V., Slesarev, A., Sokolova, T., Zayulina, K., Brasen, K., Bonch-Osmolovskaya, E.A., Peng, X., Kublanov, I., and Siebers, B., Isolation and characterization of the first xylanolytic hyperthermophilic euryarchaeon Thermococcus sp. strain 2319X1 and its unusual multidomain glycosidase, Front. Microbiol., 2016, vol. 7, p. 552.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gobet, A., Barbeyron, T., Matard-Mann, M., Mag-delenat, G., Vallenet, D., Duchaud, E., and Michel, G., Evolutionary evidence of algal polysaccharide degradation acquisition by Pseudoalteromonas carrageenovora 9T to adapt to macroalgal niches, Front. Microbiol., 2018, vol. 9, p. 2740.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gorlenko, V.M., Puchkova, N.N., and Demchev, V.V., Photosynthesizing microorganisms of the supralittoral of the White Sea, Biol. Nauki, 1985, vol. 5, pp. 66‒72.

    Google Scholar 

  15. Gorrasi, S., Pesciaroli, C., Barghini, P., Pasqualetti, M., and Fenice, M., Structure and diversity of the bacterial community of an Arctic estuarine system (Kandalaksha Bay) subject to intense tidal currents, J. Mar. Syst., 2019a, vol. 196, pp. 77‒85.

    Article  Google Scholar 

  16. Gorrasi, S., Pesciaroli, C., Barghini, P., Pasqualetti, M., Giovannini, V., and Massimiliano, F., Metagenetic profiling of the bacterial communities of an intertidal pool in Kandalaksha Bay (White Sea, Russia), J. Environ. Prot. Ecol., 2019b, vol. 20, pp. 1317‒1324.

    Google Scholar 

  17. Hollants, J., Leliaert, F., De Clerck, O., and Willems, A., What we can learn from sushi: a review on seaweed–bacterial associations, FEMS Microbiol. Ecol., 2013, vol. 83, pp. 1‒16.

    Article  CAS  PubMed  Google Scholar 

  18. Hsieh, Y.S.Y. and Harris, P.J., Xylans of red and green algae: what is known about their structures and how they are synthesised?, Polymers, 2019, vol. 11, p. 354.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huggett, M.J., Williamson, J.E., De Nys, R., Kjelleberg, S., and Steinberg, P.D., Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae, Oecologia, 2006, vol. 149, pp. 604‒619.

    Article  PubMed  Google Scholar 

  20. Iriki, Y., Suzuki, T., Nisizawa, K., and Miwa, T., Xylan of siphonaceous green algae, Nature, 1960, vol. 87, pp. 82‒83.

    Article  Google Scholar 

  21. Johnson, J., Sudheer, P.D., Yang, Y.H., Kim, Y.G., and Choi, K.Y., Hydrolytic activities of hydrolase enzymes from halophilic microorganisms, Biotechnol. Bioproc. Eng., 2017, vol. 22, pp. 450‒461.

    Article  CAS  Google Scholar 

  22. Kim, S.J., Kim, J.G., Lee, S.H., Park, S.J., Gwak, J.H., Jung, M.Y., Chung, W.H., Yang, E.J., Park, J., Jung, J., Hahn, Y., Cho, J.C., Madsen, E.L., Rodriguez-Valera, F., Hyun, J.H., and Rhee, S.K., Genomic and metatranscriptomic analyses of carbon remineralization in an Antarctic polynya, Microbiome, 2019, vol. 7, pp. 1‒15.

    Google Scholar 

  23. Kloareg, B. and Quatrano, R.S., Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides, Oceanography and Marine Biology: An Annual Review, 1988, vol. 26, pp. 259‒315.

    Google Scholar 

  24. Kravchishina, M.D., Mitzkevich, I.N., Veslopolova, E.F., Shevchenko, V.P., and Lisitzin, A.P., Relationship between the suspended particulate matter and microorganisms in the White Sea waters, Oceanology, 2008, vol. 48, pp. 837‒854.

    Article  Google Scholar 

  25. Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F., and Clerck, O.D., Phylogeny and molecular evolution of the green algae, Crit. Rev. Plant Sci., 2012, vol. 31, pp. 1–46.

    Article  Google Scholar 

  26. Mandal, A., Review on microbial xylanases and their applications, Int. J. Life Sci., 2015, vol. 4, pp. 178‒187.

    Google Scholar 

  27. Martin, M., Barbeyron, T., Martin, R., Portetelle, D., Michel, G., and Vandenbol, M., The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria, Front. Microbiol., 2015, vol. 6, p. 1487.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pesciaroli, C., Rodelas, B., Juarez-Jiménez, B., Barghini, P., and Fenice, M., Bacterial community structure of a coastal area in Kandalaksha Bay, White Sea, Russia: possible relation to tidal hydrodynamics, Ann. Microbiol., 2015, vol. 65, pp. 443‒453.

    Article  CAS  Google Scholar 

  29. Pielou, E.C., The measurement of diversity in different types of biological collections, J. Theor. Biol., 1966, vol. 13, pp. 131‒144.

    Article  Google Scholar 

  30. Qeshmi, F.I., Homaei, A., Fernandes, P., Hemmati, R., Dijkstra, B.W., and Khajeh, K., Xylanases from marine microorganisms: a brief overview on scope, sources, features and potential applications, Biochim. Biophys. Acta—Proteins Proteom., 2020, vol. 1868, p. 140312.

    Article  CAS  PubMed  Google Scholar 

  31. Ray, S., Vigouroux, J., Bouder, A., Allami, M.F., Geairon, A., Fanuel, M., Ropartz, D., Helbert, W., Lahaye, M., and Bonnin, E., Functional exploration of Pseudoalteromonas atlantica as a source of hemicellulose-active enzymes: evidence for a GH8 xylanase with unusual mode of action, Enzyme Microb. Technol., 2019, vol. 127, pp. 6‒16.

    Article  CAS  PubMed  Google Scholar 

  32. Romankevich, E.A. and Vetrov, A.A., Tsikl ugleroda v arkticheskikh moryakh Rossii (Carbon Cycle in Arctic Seas of Russia), Moscow: Nauka, 2001.

  33. Savvichev, A.S., Rusanov, I.I., Yusupov, S.K., Bairamov, I.T., Pimenov, N.V., Lein, A.Y., and Ivanov, M.V., The process of microbial sulfate reduction in sediments of the coastal zone and littoral of the Kandalaksha Bay of the White Sea, Microbiology (Moscow), 2003, vol. 72, pp. 478–489.

    Article  CAS  Google Scholar 

  34. Savvichev, A.S., Rusanov, I.I., Zakharova, E.E., Veslopolova, E.F., Mitskevich, I.N., Kravchishina, M.D., Lein, A.Yu., and Ivanov, M.V., Microbial processes of the carbon and sulfur cycles in the White Sea, Microbiology (Moscow), 2008, vol. 77, pp. 734‒750.

    Article  CAS  Google Scholar 

  35. Semenova, E.V., Shlykova, D.S., Semenov, A.M., Ivanov, M.N., Shelyakov, O.V., and Netrusov, A.I., Bacterial epiphytes of brown algae involved in oil utilization in the ecosystems of Northern seas, Moscow Univ. Biol. Sci. Bull., 2009, no. 3, pp. 18‒22.

  36. Shannon, C.E. and Weaver, W., The Mathematical Theory of Communication, Urbana: University of Illinois, 1949, vol. 117.

    Google Scholar 

  37. Shuvaeva, G.P. and Sysoeva, M.G., Xylanase of the micromycete Rhizopus var. microsporus 595: preparation, structural and functional characteristics, and application, Appl. Biochem. Microbiol., 2010, vol. 46, pp. 641‒647.

    Article  CAS  Google Scholar 

  38. Singh, R.P. and Reddy, C.R.K., Seaweed–microbial interactions: key functions of seaweed-associated bacteria, FEMS Microbiol. Ecol., 2014, vol. 88, pp. 213‒230.

    Article  CAS  PubMed  Google Scholar 

  39. Sorensen, T.A., A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons, Biol. Skar., 1948, vol. 5, pp. 1‒34.

    Google Scholar 

  40. Suleiman, M., Krüger, A., and Antranikian, G., Biomass-degrading glycoside hydrolases of archaeal origin, Biotechnol. Biofuels, 2020, vol. 13, pp. 1‒14.

    Article  Google Scholar 

  41. Trias, R., García-Lledó, A., Sánchez, N., López-Jurado, J.L., Hallin, S., and Bañeras, L., Abundance and composition of epiphytic bacterial and archaeal ammonia oxidizers of marine red and brown macroalgae, Appl. Environ. Microbiol., 2012, vol. 78, pp. 318‒325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Umemoto, Y., Shibata, T., and Araki, T., D-xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, and D-xylulose production from β-1,3-xylan, Mar. Biotechnol., 2012, vol. 14, pp. 10‒20.

    Article  CAS  Google Scholar 

  43. Vortsepneva, E., Chevaldonné, P., Klyukina, A., Naduvaeva, E., Todt, C., Zhadan, A., Tzetlin, A., and Kublanov, I., Microbial associations of shallow-water Mediterranean marine cave Solenogastres (Mollusca), PeerJ, 2021, vol. 9, p. e12655.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xing, P., Hahnke, R.L., Unfried, F., Markert, S., Huang, S., Barbeyron, T., Harder, J., Becher, D., Schweder, T., Glöckner, F.O., Amann, R.I., and Teeling, H., Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom, ISME J., 2015, vol. 9, pp. 1410‒1422.

    Article  CAS  PubMed  Google Scholar 

  45. Yoon, H.S., Nelson, W., Lindtrom, S.C., Boo, S.M., Pueschel, C., Qiu, H., and Bhattacharya, D., Rhodophyta, in Handbook of the Protists, Archibald, J.M., Simpson, A.G.B., and Slamovits, C.H., Eds., Cham: Springer, 2017a, pp. 89–133.

    Google Scholar 

  46. Yoon, K., Song, J.Y., Kwak, M.J., Kwon, S.K., and Kim, J.F., Genome characteristics of the proteorhodopsin-containing marine flavobacterium Polaribacter dokdonensis DSW-5, J. Microbiol., 2017b, vol. 55, pp. 561‒567.

    Article  CAS  PubMed  Google Scholar 

  47. Yu, W.N., Du, Z.Z., Chang, Y.Q., Mu, D.S., and Du, Z.J., Marinomonas agarivorans sp. nov., an agar-degrading marine bacterium isolated from red algae, Int. J. Syst. Evol. Microbiol., 2020, vol. 70, pp. 100‒104.

    Article  CAS  PubMed  Google Scholar 

  48. Zavarzin, G.A., The rise of the biosphere, Microbiology (Moscow), 1997, vol. 66, pp. 603‒611.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.N. Vinogradova (Moscow State University) for assistance in identification of algae and in preparation of pure culture samples for sequencing, to A.Yu. Merkel (Research Center of Biotechnology) for assistance in statistical analysis of the data, and to A.B. Tzetlin, director of the Pertsov Biological Station, as well as to all the personnel of the station, for the provided possibility to use the research facilities of the station.

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Salova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interests.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salova, V.D., Kholdina, A.M., Melnik, A.D. et al. Microbial Communities Associated with the White Sea Red Algae as a Source of Xylanolytic Microorganisms. Microbiology 92, 418–426 (2023). https://doi.org/10.1134/S002626172360026X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626172360026X

Keywords:

Navigation