Skip to main content
Log in

Trends and Driving Forces of Cyanobacterial Blooms in Russia in the 20th and Early 21st Centuries

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

In order to study long-term trends and factors affecting the development of cyanobacteria in the terrestrial water bodies and coastal seas of Russia, we collected scientific reports on the cyanobacterial blooms throughout the 20th and early 21st centuries and compared this information with available data on the amount of fertilizers used in agriculture, volume of polluted wastewaters and average air temperature. We suppose that the problem of cyanobacterial blooms was most acute during the period 1930–1991. The main driving factors at that time were the large reservoir construction, untreated wastewater discharge and the widespread use of fertilizers in agriculture. In post-Soviet Russia, there was a noticeable reduction of polluted wastewater runoff along with a decrease in the use of fertilizers in agriculture, which caused a drop in the intensity of blooming. Nevertheless, the resumption of the use of fertilizers and a sharp increase in average annual temperatures in Russia may be responsible for intensification of cyanobacterial blooms in water bodies observed in the early 21st century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Afanasjeva, N.A., Iljinskaya, G.K., and Korshenko, A.N., Ecological state of Caspian and Baltic seas at the shores of the Russian Federation, Meteorol. Gydrol., 1993, pp. 105–115.

    Google Scholar 

  2. Aksenova, E.I., The monitoring of the “bloom” caused by blue-green algae in the Lower Don water bodies, in Ekologiya i fiziologiya sine-zelenykh vodoroslei (Ecology and Physiology of Blue-Green Algae), 1965, pp. 114–122.

    Google Scholar 

  3. Aldakimova, A.Y., Water “bloom” caused by blue-green algae and its role in the biology of the Azov Sea, in Ekologiya i fiziologiya sine-zelenykh vodoroslei (Ecology and Physiology of Blue-Green Algae), 1965, pp. 122–128.

  4. Alexandrov, B.G., Terenko, L.M., and Nesterova, D.A., The first case of a water bloom by Nodularia spumigena Mert. ex Born. et Flah. (Cyanophyta) in the Black Sea, Algologiya, 2012, pp. 152–165.

    Google Scholar 

  5. Alkhimenko, A.P., Efimova, L.K., and Kondratiev, S.A., Change in ecological state of Lake Ladoga taking into account the influence of economic activity on its catchment area, Society. Environment. Development (Terra Humana), 2008, pp. 158–170.

  6. Astrakhantsev, G.P., Menshutkin, V.V., Petrova, N.A., and Rukhovets, L.A., Modelirovanie ekosistem bol’shikh stratifitsirovannykh ozer (Modelling of the Ecosystems of Large Stratified Lakes), St. Petersburg: Nauka, 2003.

  7. Bar-Yosef, Y., Sukenik, A., Hadas, O., Viner-Mozzini, Y., and Kaplan, A., Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons, Curr. Biol., 2010, vol. 20, pp. 1557−1561.

    Article  CAS  Google Scholar 

  8. Bazhenov, V.I., Characteristic of the modern period of wastewater treatment facilities development, The Best Available Technologies of Water Supply and Disposal, 2013, vol. 2, pp. 40–47.

    Google Scholar 

  9. Begun, A.A., Orlova, T.Y., and Selina, M.S., The case of water “bloom” in the Amur Bay of the Sea of Japan caused by dynophyte Oxyrrhis marina Dujardin, 1841, Biol. Morya, 2004, vol. 30, pp. 68–71.

    Google Scholar 

  10. Belyakova, R.N., Voloshko, L.N., Gavrilova, O.V., Gogorev, R.M., Makarova, I.V., Okolodkov, Y.B., and Rundina, L.A., Tsvetushchie vodorosly vodoemov Severo-Vostochnoi Rossii (Bloom Forming Algae from Water Bodies of North Western Russia), Moscow: KMK Sci., 2006.

  11. Belykh, O.I., Tikhonova, I.V., Kuzmin, A.V., Sorokovikova, E.G., Fedorova, G.A., Khanaev, I.V., Sherbakova, T., and Timoshkin, O.A., First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins, Toxicon, 2016, vol. 121, pp. 36−40.

    Article  CAS  Google Scholar 

  12. Belykh, O.I., Tikhonova, I.V., Kuzmin, A.V., Sorokovikova, E.G., Potapov, S.A., Galkin, A.V., and Fedorova, G.A., Toxin-producung cyanobacteria in Lake Baikal and the water bodies of Baikal region, Theor. Appl. Ecol., 2020, vol. 1, pp. 21−27.

    Article  Google Scholar 

  13. Beusen, A.H., Bouwman, A.F. , Van Beek, L.P., Mogollón, J.M., and Middelburg, J.J., Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum, Biogeosci., 2016, vol. 13, p. 2441.

    Article  CAS  Google Scholar 

  14. Birger, T.I., Malyarevskaya, A.Y., and Arsan, O.M., About the ethiology of Haff (Juxan-Sartlan) desease, Gidrobiol. Zh., 1973, vol. 9, pp. 115–126.

    CAS  Google Scholar 

  15. Bogdanova, E.G., Gavrilova, S.Y., and Ilin, B.M., Time changes of atmospheric precipitation in Russia from the corrected data during 1936–2000, Russ. Meteorol. Hydrol., 2010, vol. 35, pp. 706–714.

    Article  Google Scholar 

  16. Bolkhontsev, E.N., The observations over the phytoplankton of the Volga River during summer 1902, Yearbook of the Volga Biological Station, Saratov, 1903.

  17. Chen, J., Xie, P., Li, L., and Xu, J. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage, Toxicol. Sci., 2009, vol. 108, pp. 81–89.

    Article  CAS  Google Scholar 

  18. Chernova, E., Sidelev, S., Russkikh, I., Korneva, L., Solovyova, V., Mineeva, N., Stepanova, I., and Zhakov-skaya, Z., Spatial distribution of cyanotoxins and ratios of microcystin to biomass indicators in the reservoirs of the Volga, Kama and Don rivers, the European part of Russia, Limnologica, 2020, vol. 84, p. 125819. https://doi.org/10.1016/j.limno.2020.125819

    Article  CAS  Google Scholar 

  19. Chernova, E., Sidelev, S., Russkikh, I., Voyakina, E., and Zhakovskaya, Z., First observation of microcystin-and anatoxin-a-producing cyanobacteria in the easternmost part of the Gulf of Finland (the Baltic Sea), Toxicon, 2019, vol. 157, pp. 18–24.

    Article  CAS  Google Scholar 

  20. Danilovich, D.A., Epov, A.N., and Kanunnikova, M.A., Analysis of data of the treatment facilities function as a base for the technical standartization, The Best Available Technologies of Water Supply and Disposal, 2015, vols. 3−4, pp. 18–28.

    Google Scholar 

  21. Denisov, D.B. and Kashulin, N.A., Cyanoprocaryotes in the plankton of Lake Imandra (Cola Peninsula), Proc. Cola Sci. Centre RAS, 2016.

    Google Scholar 

  22. Dittmann, E., Erhard, M., Kaebernick, M., Scheler, C., Neilan, B.A., von Döhren, H., and Börner, T., Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806, Microbiology (SGM), 2001, vol. 147, pp. 3113−3119.

    Article  CAS  Google Scholar 

  23. Dove, A. and Chapra, S.C. Long-term trends of nutrients and trophic response variables for the Great Lakes, Limnol. Oceanogr., 2015, vol. 60, pp. 696–721.

    Article  Google Scholar 

  24. Drabkova, V.G., Rutnyantsev, V.A., Sergeeva, L.V., and Slepukhina, T.D., Ecological problems of Lake Ladoga: causes and solutions, Hydrobiologia, 1996, vol. 322, pp. 1–7. https://doi.org/10.1007/BF00031798

    Article  CAS  Google Scholar 

  25. Du, X., Liu, H., Yuan, L., Wang, Y., Ma, Y., Wang, R., Chen, X., Losiewicz, M.D., Guo, H., and Zhang, H., The diversity of cyanobacterial toxins on structural characterization, distribution and identification: a systematic review, Toxins, 2019, vol. 11, p. 530. https://doi.org/10.3390/toxins11090530

    Article  CAS  Google Scholar 

  26. Ecological state of Lake Ladoga according to the data of Central state archive of historical and political documents. URL: https://spbarchives.ru/cgaipd_publications/-/asset_publisher/yV5V/content/ekologiceskoe-sostoanie-ladozskogo-ozera-v-1970-e-1980-e-gg-po-dokumentam-cgaipd-spb.

  27. Ermolaev, V.I., Water “bloom” of blue-green algae and its influence on fish, Siber. Bull. Agricul. Sci., 2010, pp. 55–60). Federal State Statistic Service. URL: https://rosstat.gov.ru.

    Google Scholar 

  28. Federal State Statistic Service. URL: https://rosstat.gov.ru.

  29. Frolov, A.V. and Georgievskii, V.Y., Changes in water resources under conditions of climate warming and their impact on water inflow to Russian large reservoirs, Russ. Meteorol. Hydrol., 2018, vol. 43, pp. 390–396.

    Article  Google Scholar 

  30. Getsen, M.V., Vodorosli ekosistem Krainego Severa (Algae of the Far North Ecosystems), Leningrad: Nauka, 1985, pp. 249–258.

  31. Gobi, K., The Report on the algological research conducted in summer 1877 in the Gulf of Finland, Proc. St. Petersburg Natural. Soc., 1879.

    Google Scholar 

  32. Grachev, M., Zubkov, I., Tikhonova, I., Ivacheva, M., Kuzmin, A., Sukhanova, E., Sorokovikova, E., Fe-dorova, G., Galkin, A., and Suslova, M., Extensive contamination of water with saxitoxin near the dam of the Irkutsk hydropower station reservoir (East Siberia, Russia), Toxins, 2018, vol. 10, p. 402.

    Article  CAS  Google Scholar 

  33. Gromov, B.V., Vepritsky, A.A., Mamkaeva, K.A., and Voloshko, L.N., A survey of toxicity of cyanobacterial blooms in Lake Ladoga and adjacent water bodies, Hydrobiologia, 1996, vol. 322, pp. 149–151.

    Article  Google Scholar 

  34. Guseva, K.A., The role of blue-green algae in the reservoir and the factors of their mass development, in Ekologiya i fiziologiya sine-zelenykh vodoroslei (Ecology and Physiology of Blue-Green Algae), Moscow: Nauka, 1965, pp. 12−33.

  35. Hallegraeff, G.M., Anderson, D.M., Belin, C., Bot-tein, M.Y.D., Bresnan, E., Chinain, M., Enevoldsen, H., Iwataki, M., Karlson, B., McKenzie, C.H., Sunesen, I., Pitcher, G.C., Provoost, P., Richardson, A., Schwei-bold, L., Tester, P.A., Trainer, V.L., Yñiguez, A.T., and Zingone, A., Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts, Commun. Earth Environ., 2021, vol. 2, p. 117.

    Article  Google Scholar 

  36. Herrera, N. and Echeverri, F., Evidence of quorum sensing in cyanobacteria by homoserine lactones: the origin of blooms, Water, 2021, vol. 13, p. 1831.

    Article  CAS  Google Scholar 

  37. Ho, J.C., Michalak, A.M., and Pahlevan, N., Widespread global increase in intense lake phytoplankton blooms since the 1980s., Nature, 2019, vol. 574, pp. 667–670.

    Article  CAS  Google Scholar 

  38. Holopainen, A.L., Huttunen, P., Letanskaya, G.I., and Protopopova, E.V., The trophic state of Lake Ladoga as indicated by late summer phytoplankton, Hydrobiologia, 1996, vol. 322, pp. 9–16.

    Article  Google Scholar 

  39. Jeddeloh, B.Z., Haffkrankheit, in Ergebnisse der inneren Medizin und Kinderheilkunde, Berlin: Springer, 1939, pp. 138−182.

    Google Scholar 

  40. Kashulin, N.A., Bekkelund, A.K., and Dauwalter, V.A., Peculiarities of summer spatial distribution of phosphorus, nitrogen and chlorophyll a in a large eutrophic arctic Lake Imandra (Murmansk region) in relation to the massive development of photosynthesizing microorganisms, Biosphere, 2020, vol. 12, pp. 63–92.

    Google Scholar 

  41. Kiselev, I.A., Addition to the issue of qualitative and quantitative contents of phytoplankton of a reservoir on Volga, Proc. Zool. Inst. RAS, 1948, vol. 8, pp. 567–584.

    Google Scholar 

  42. Korneva, L.G., Fitoplankton vodokhranilishch Volzhskogo dasseina (Phytoplankton of Volga River Basin Reservoirs), Kostroma: Kostroma Publishing House, 2015.

  43. Kravchuk, E.S., Ekologicheskie i fiziologicheskie aspekty tsianobakterial’nogo tsveteniya vody v dvukh raznykh tipakh vodokhranilishch (Krasnoyarskii krai) (Ecological and Physiological Aspects of Water Blooms by Blue-Green Algae in Two Different Types of Reservoirs (Krasnoyarsk Area)), Inst. of Biology of Inland Waters, Russ. Acad. Sci., 2004.

  44. Kurashov, E.A., Barbashova, M.A., Dudakova, D.S., Kapustina, L.L., Mitrukova, G.G., Rusanov, A.G., Alyoshina, D.G., Iofina, I.V., Protopopova, E.V., and Rodionova, N.V., Ecosystem of Lake Ladoga: modern state and trends of its change in the end of XX–the beginning of XXI, Biosphere, 2018, vol. 10, pp. 65–121.

    Google Scholar 

  45. Kuzin, B.S., Ekologiya i fiziologiya sine-zelenykh vodoroslei (Ecology and Physiology of Blue-Green Algae), Moscow: Nauka, 1965, pp. 3−4.

  46. Laskin, B.Y., Yuksov desease, Sov. Med. J., 1939, vol. 502, pp. 44–49.

    Google Scholar 

  47. Ludupova, E.Y., Sergeeva, L.A., Gyrgeshkinova, N.S., Oloeva, E.V., Badmaeva, V.Y., and Budasheeva, A.B., A case study of Haff desease (alimentary toxic paroxysmal myoglobinuria) outbreak in republic of Buryatia in the villages of Pribaikalsky region situated near Lake Kotokel, Acta Biomed. Sci., 2009, pp. 92–94.

    Google Scholar 

  48. Lürling, M., Mello, M.M.E., Van Oosterhout, F., de Senerpont Domis, L., and Marinho, M.M., Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature, Front. Microbiol., 2018, vol. 9, p. 1851.

    Article  Google Scholar 

  49. Martysheva, N.A. and Khoruzhaya, T.A., Peculiarities of water blue-green microalgal “bloom” in Tsimlyansk Reservoir, Bull. Higher Education Inst. North Caucasus Region. Nat. Sci., 2017, p. 3005.

    Google Scholar 

  50. Matishov, G.G. and Kovaleva, G.V., Water “bloom” in the water bodies of South of Russia and the interruptions of the water supply (a case of Volgodonsk city), Bull. South Sci. Centre RAS, 2010, vol. 6, pp. 71–79.

    Google Scholar 

  51. Mineeva N.M., Rastitel’nye pigmenty v vodakn privolzhskikh vodokhranilishch (Plant Pigments in the Waters of the Volga River Reservoirs), Moscow: Nauka, 2004.

  52. Mineeva, N.M., Sigareva, L.E., Timofeeva, N.A., and Semadeny, I.V., Plant pigments in water and bottom sediments of the Tsimlyansk Reservoir, Inland Water Biol., 2020, vol. 1, pp. 408–416.

    Article  Google Scholar 

  53. Moiseenko, T. and Sharov, A., Large Russian Lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review, Geosciences, 2019, vol. 9, p. 492.

    Article  CAS  Google Scholar 

  54. Namsaraev, Z., Melnikova, A., Ivanov, V., Komova, A., and Teslyuk, A., Cyanobacterial bloom in the world largest freshwater Lake Baikal, in Proceedings of the IOP Conference Series: Earth and Environmental Science, IOP, 2018, vol. 121, p. 032039.

  55. Namsaraev, Z., Melnikova, A., Komova, A., Ivanov, V., Rudenko, A., and Ivanov, E., Algal bloom occurrence and effects in Russia, Water, 2020, vol. 12, p. 285.

    Article  Google Scholar 

  56. National Academy of Sciences, Eutrophication: Causes, Consequences. Proc. Symp., Natl. Acad. Sci., 1969.

  57. Nikanorov, A.M. and Khoruzhaya, T.A., The role of biotic and abiotic components of the aquatic ecosystem in the formation of ecological trouble of Tsimlyansk and Manych reservoirs, Water Res., 2019, vol. 46–5, pp. 544–554.

  58. Nikolaev, I.I., The “bloom” of water of the Baltic Sea, VNIRO, 1954, vol. 26, pp. 210–220.

    Google Scholar 

  59. Olenina, I., Species content of phytoplankton in Curonian Bay and the coastal zone of South-Eastern part of the Baltic Sea, Botanica Lithuanica, 1996, vols. 2−3, pp. 259–300.

    Google Scholar 

  60. Orlova, T.Y., Efimova, K.V., and Stonik, I.V., Morphology and molecular phylogeny of Pseudohaptolina sorokinii sp. nov. (Prymnesiales, Haptophyta) from the Sea of Japan, Russia, Phycologia, 2016, vol. 55, pp. 506–514.

    Article  CAS  Google Scholar 

  61. Paerl, H.W., Hall, N.S., and Calandrino, E.S., Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change, Sci. Total Environ., 2011, vol. 409, pp. 1739–1745.

    Article  CAS  Google Scholar 

  62. Patova, E.N., Cyanoprocaryotes causing water “blooms” in Kharbey lakes of Bol’shezemel’skaya tundra, J. Siber. Fed. Univ. Biol., 2014, vol. 7, pp. 282–290.

    Article  Google Scholar 

  63. Petrova, N.A., Phytoplankton of the Lake Ladoga, in Rastitel’nye resursy Ladozhskogo ozera (Plant Resources of the Lake Ladoga), Leningrad: Leningrad Gos Univ., 1968, pp. 73–130.

  64. Petrova, N.A., The ratio between phosphorus content and phytoplankton production, in Antropogennaya eutrofikatsiya ozera Ladoga (Antropogenic Eutrophicaton of Lake Ladoga), Leningrad: Nauka, 1982, pp. 243–254.

  65. Petrova, N.A., The phytoplankton of Ladoga and Onega lakes and its recent successional changes, Arch. Hydrobiol. Beih. Ergebn. Limnol., 1987, vol. 25, pp. 11–18.

    Google Scholar 

  66. Pouria, S., de Andrade, A., Barbosa, J., Cavalcanti, R.L., Barreto, V.T.S., Ward, C.J., Preiser, W., Poon, G.K., Neild, G.H., and Codd, G.A., Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil, The Lancet, 1998, vol. 352, pp. 21−26.

    Article  CAS  Google Scholar 

  67. Priymachenko, A.D., Phytoplankton of Volga from Yaroslavl to Stalingrad during the period before the construction of the reservoirs, Trans. Inst. Biol. Inland Waters USSR AS, 1959, vol. 5.

    Google Scholar 

  68. Priymachenko, A.D., Content and main patterns of distribution of phytoplankton biomass in the reservoirs of the lowland rivers of the USSR, Trans. Inst. Biol. Inland Waters USSR AS, 1960, vol. 6.

    Google Scholar 

  69. Rantala, A., Fewer, D.P., Hisbergues, M., Rouhiainen, L., Vaitomaa, J., Börner, T., and Sivonen, K., Phylogenetic evidence for the early evolution of microcystin synthesis, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 568−573.

    Article  CAS  Google Scholar 

  70. Rossolimo, L.L., Anthropogenic eutrophication of the water bodies, General Ecology. Biocenology. Hydrobiology, 1975, vol. 2, pp. 8–60.

    Google Scholar 

  71. Salmaso, N., Boscaini, A., Capelli, C., and Cerasino, L., Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three-decade study in Lake Garda, Hydrobiologia, 2018, vol. 824, pp. 177–195.

    Article  CAS  Google Scholar 

  72. Sand-Jensen, K., Bruun, H.H., and Baastrup-Spohr, L., Decade-long time delays in nutrient and plant species dynamics during eutrophication and re-oligotrophication of Lake Fure 1900–2015, J. Ecol., 2017, vol. 105, pp. 690–700.

    Article  Google Scholar 

  73. Scavia, D., Allan, J.D., Arend, K.K., Bartell, S., Beletsky, D., Bosch, N.S., Brandt, S.B., Briland, R.D., Daloğlu, I., DePinto, J.V., Dolan, D.M., Evans, M.A., Farmer, T.M., Goto, D., Han, H., et al., Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia, J. Great Lakes Res., 2014, vol. 40, pp. 226–246.

    Article  CAS  Google Scholar 

  74. Selezneva, A.V., Seleznev, V.A., and Bespalova K.V., Mass development of algae in the reservoirs of the Volga River in the low water conditions, Povolzhsky J. Ecology, 2014, vol. 1, pp. 88–96.

    Google Scholar 

  75. Shafran, S.A., Dynamics of fertilization and soil fertility in Russia, Agrokhimiya, 2004, pp. 9–17.

    Google Scholar 

  76. Shantanova, L.N., Mondodoev, A.G., Razuvayeva, Y.G., and Pronin, N.M., The ethiology of Haff desease outbreak on Lake Kotokel, Acta Biomedica Scientifica, 2010, pp. 298–301.

  77. Sharma, S., Gray, D.K., Read, J.S., O’Reilly, C.M., Schneider, P., Qudrat, A., Sharma, S., Gray, D.K, Read, J.S., O’Reilly, C.M., Schneider, P., Qudrat, A., Gries, C., Stefanoff, S., Hampton, S.E., Hook, S., Lenters, J.D., Livingstone, D.M., McIntyre, P.B., Adrian, R., Allan, M.G., et al., A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009, Sci. Data, 2015, vol. 2, pp. 1−19.

    Article  Google Scholar 

  78. Shiklomanov, I.A., Appraisal and assessment of world water resources, Water Int., 2000, vol. 25, pp. 11–32.

    Article  Google Scholar 

  79. Schindler, D.W., Carpenter, S.R., Chapra, S.C., Hecky, R.E., and Orihel, D.M., Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol., 2016, vol. 50, pp. 8923−8929.

    Article  CAS  Google Scholar 

  80. Sidelev, S.I., Molecular genetic identification and seasonal succession of toxigenic cyanobacteria in phytoplankton of the Rybinsk Reservoir (Russia), Inland Water Biol., 2016, vol. 9, pp. 368–374.

    Article  Google Scholar 

  81. Sidelev, S.I., Golokolenova, T.B., Chernova, E.N., and Russkikh, Y.V., Analysis of phytoplankton in Tsimlyansk Reservoir (Russia) for the presence of cyanobacterial hepato- and neurotoxins, Microbiology (Moscow), 2015, vol. 84, pp. 828–837.

    Article  CAS  Google Scholar 

  82. Sivkov, P.S., Domatsky, V.N., Fedorov, Y.V., Gontsov, A.A., and Ustyuzhanin, Y.V., Alimentotoxical Paroxysmal Myoglobinuria, ATPM, 2004.

    Google Scholar 

  83. Sivonen, K., Namikoshi, I.M., Evans, W.R., Gromov, B.V., Carmichael, W.W., and Rinehart, K.L., Isolation and structures of five microcystins from a Russian Microcystis aeruginosa strain CALU 972, Toxicon, 1992, pp. 1481–1485.

  84. State Report “On the State and Use of Water Resources of the Russian Federation.” Available online: https://www. mnr.gov.ru/docs/gosudarstvennye_doklady/o_sostoyanii_ i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii/.

  85. Statistics of the Russian Empire, the USSR, and the Russian Federation. URL: https://istmat.org/statistics.

  86. Steffen, M.M., Davis, T.W., McKay, R.M.L., Bullerjahn, G.S., Krausfeldt, L.E., Stough, J.M., Neitzey, M.L., Gilbert, N.E., Boyer, G.L., and Johengen, T.H., Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: linkages between biology and the water supply shutdown of Toledo, OH, Environ. Sci. Technol., 2017, vol. 51, pp. 6745–6755.

    Article  CAS  Google Scholar 

  87. Stroganov, N.S. and Zakharov, N.G., Volga, Oka, Moskva-river as a source of water supply in Moscow, Proceedings of the Commission for the Search of New Sources of Water Supply in Moscow, 1927, vol. 3, pp. 1–209.

    Google Scholar 

  88. Tadonleke, R.D., Lazzarotto, J., Anneville, O., and Druart, J.C., Phytoplankton productivity increased in Lake Geneva despite phosphorus loading reduction, J. Plankton Res., 2009, vol. 31, pp. 1179−1194.

    Article  CAS  Google Scholar 

  89. Terenko, L.M. and Nesterova, D.A., Cyanoprokaryota of the plankton of the northwestern Black Sea (Ukraine), Algologia, 2015, vol. 25, pp. 278–29.

    Article  Google Scholar 

  90. Ueno, Y., Nagata, S., Tsutsumi, T., Hasegawa, A., Watanabe, M.F., Park, H.D., Chen, G.C., Chen, G., and Yu, S.Z., Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay, Carcinogenesis, 1996, vol. 17, pp. 1317−1321.

    Article  CAS  Google Scholar 

  91. Uspenskij, E.E., To the issue of the objectives and routes of microbiology in relation to the city water supply development and in particular during the reservoir construction, Mikrobiologiya, 1932, vols. 1−2, p. 89–111.

    Google Scholar 

  92. Utkilen, H. and Gjølme, N., Iron-stimulated toxin production in Microcystis aeruginosa, Appl. Environ. Microbiol., 1995, vol. 61, pp. 797−800.

    Article  CAS  Google Scholar 

  93. Vershinin, A.O. and Orlova, T.Y., Toxic and harmful algae in the coastal waters of Russia, Oceanology, 2008, vol. 48, pp. 524–537.

    Article  Google Scholar 

  94. Voloshko, L.N., Pinevich, A.V., Kopecky, I., Titova, N.N., Hrouzek, P., and Zelic, P., Water blooms and toxins produced by cyanobacteria in the lower Suzdalskoe Lake (Saint-Petersburg, Russia), Algology, 2010, pp. 210–223.

    Google Scholar 

  95. Voyakina, E.Y., Russkikh, Y.V., Chernova, E.N., and Zhakovskaya, Z.A., Toxic cyanobacteria and their metabolites in the water bodies of North West of Russia, Theor. Appl. Ecol., 2020, pp. 124–129.

  96. Yakovlev, S.V., Karelin, Y.A., Zhukov, A.I., and Kolobanov, S.K., Sewerage. Textbook for Higher Education Institutions, Moskva: Stroyizdat, 1975.

    Google Scholar 

  97. Zernova, V.V. and Vershinin, A.O., Anthropogenic-Driven Changes of the Coastal Phytoplankton in the South-Eastern Baltic in 1980–1990s, in Proc. Proc. ICES Intern. Symp. on Temporal Variability of Plankton and their Physico-Chemical Environment (Kiel), 1997.

  98. Wang, S., Ding, P., Lu, S., Wu, P., Wei, X., Huang, R., and Kai, T., Cell density-dependent regulation of microcystin synthetase genes (mcy) expression and microcystin-LR production in Microcystis aeruginosa that mimics quorum sensing, Ecotoxicol. Environ. Safety, 2021, vol. 220, p. 112330.

    Article  CAS  Google Scholar 

  99. Wilkinson, G.M., Walter, J.A., Buelo, C.D., and Pace, M.L., No evidence of widespread algal bloom intensification in hundreds of lakes, Front. Ecology Environ., 2022, vol. 20, pp. 16–21.

    Article  Google Scholar 

Download references

Funding

This work was carried out in the Kurchatov Center for Genome Research and supported by the Ministry of Science and Higher Education of Russian Federation, grant no. 075-15-2019-1659, and Russian Foundation for Basic Research project no. 17-29-05103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. B. Namsaraev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interests.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikova, A.A., Komova, A.V. & Namsaraev, Z.B. Trends and Driving Forces of Cyanobacterial Blooms in Russia in the 20th and Early 21st Centuries. Microbiology 91, 649–661 (2022). https://doi.org/10.1134/S0026261722101027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722101027

Keywords:

Navigation