Skip to main content
Log in

Search for Efficient Chitosan-Based Fungicides to Protect the 15th‒16th Centuries Tempera Painting in Exhibits from the State Tretyakov Gallery

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Growth inhibition by chitosans (with molecular weight 6, 12, 18, 25 and 45 kDa) was demonstrated for 10 filamentous fungi belonging to the families Aspergillaceae, Cladosporiacea, Pleosporaceae, Cordycipitaceae and Microascaceae which are responsible for biodeterioration of tempera paintings and are the dominant members of microbiome from Paintings of Ancient Rus Halls, State Tretyakov Gallery, Russia. The greatest effect was achieved at 2% chitosan in agar medium; its antifungal activity increased in the row: 6‒12‒18‒25 kDa. Chitosans with a molecular weights of 25 and 45 kDa inhibited fungal growth to the same degree. Representatives of Cladosporiaceae and Sordariomycetes (Cordycipitaceae and Microascaceae) showed the greatest sensitivity to chitosan. Some Aspergillaceae were found to exhibit elevated resistance. Investigation of antifungal activity of chitosans incorporated into tempera materials to assess their possible application as art objects antiseptics will be the goal of our further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Camuffo, D., Bernardi, A., Sturaro, G., and Valentino, A., The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery, Florence, J. Cult. Herit., 2002, vol. 3, pp. 155–161. https://doi.org/10.1016/S1296-2074(02)01171-8

    Article  Google Scholar 

  2. De, K.B. and Verma, S., Characterization of lipids and fatty acids of the soil derived fungus Cladosporium sp., Grasas y Aceites, 2011, vol. 62, pp. 213–220. https://doi.org/10.3989/gya.090910

    Article  CAS  Google Scholar 

  3. Dumina, M.V., Zhgun, A.A., Domracheva, A.G., Novak, M.I., and El’darov, M.A., Chromosomal polymorphism of Acremonium chrysogenum strains producing cephalosporin C, Russ. J. Genet., 2012, vol. 48, pp. 778‒784. https://doi.org/10.1134/S1022795412050067

    Article  CAS  Google Scholar 

  4. Dumina, M.V., Zhgun, A.A., Kerpichnikov, I.V., Domracheva, A.G., Novak, M.I., Eldarov, M.A., Bartoshevich, Y.E., Valiachmetov, A.Y., Knorre, D.A., and Severin, F.F., Functional analysis of MFS protein CefT involved in the transport of beta-lactam antibiotics in Acremonium chrysogenum and Saccharomyces cerevisiae,Appl. Biochem. Microbiol., 2013, vol. 49, pp. 368‒377. https://doi.org/10.1134/S0003683813040042

    Article  CAS  Google Scholar 

  5. Hyvönen, M.T., Keinänen, T.A., Nuraeva, G.K., Yanva-rev, D.V., Khomutov, M., Khurs, E.N., Kochetkov, S.N., Vepsäläinen, J., Zhgun, A.A., and Khomutov, A.R., Hydroxylamine analogue of agmatine: magic bullet for arginine decarboxylase, Biomolecules, 2020, vol. 10, art. 406. https://doi.org/10.3390/biom10030406

    Article  CAS  PubMed Central  Google Scholar 

  6. Karakasidou, K. Nikolouli, K., Amoutzias, G.D., Pournou, A., Manassis, C., Tsiamis, G., and Mossialos, D., Microbial diversity in biodeteriorated Greek historical documents dating back to the 19th and 20th century: a case study, MicrobiologyOpen, 2018, vol. 7. no. 5. e00596. https://doi.org/10.1002/mbo3.596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karpova, N.V., Shagdarova, B.Ts., Lyalina, T.S., Il’ina, A.V., Tereshina, V.M., and Varlamov, V.P., Influence of the main characteristics of low weight chitosan on the growth of the plant pathogenic fungus Botrytis cinerea,Appl. Biochem. Microbiol., 2019, vol. 55, pp. 405–413. https://doi.org/10.1134/S0003683819040069

    Article  CAS  Google Scholar 

  8. Kean, T. and Thanou, M., Biodegradation, biodistribution and toxicity of chitosan, Adv. Drug Deliv. Rev., 2010, vol. 62, pp. 3–11. https://doi.org/10.1016/j.addr.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  9. Li, Q., Zhang, B., He, Z., and Yang, X., Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing, PLoS One, 2016, vol. 11. e0163287. https://doi.org/10.1371/journal.pone.0163287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. López-Miras, M. del M., Martín-Sánchez, I., Yebra-Rodríguez, Á., Romero-Noguera, J., Bolívar-Galiano, F., Ettenauer, J., Sterflinger, K., and Piñar, G., Contribution of the microbial communities detected on an oil painting on canvas to its biodeterioration, PLoS One, 2013, vol. 8. e80198. https://doi.org/10.1371/journal.pone.0080198

    Article  CAS  PubMed Central  Google Scholar 

  11. Lopez-Moya, F., Suarez-Fernandez, M., and Lopez-Llorca, L.V., Molecular mechanisms of chitosan interactions with fungi and plants, Int. J. Mol. Sci., 2019, vol. 20, art. 332. https://doi.org/10.3390/ijms20020332

    Article  CAS  PubMed Central  Google Scholar 

  12. Lunkov, A.P., Ilyina, A.V., and Varlamov, V.P., Antioxidant, antimicrobial, and fungicidal properties of chitosan based films (review), Appl. Biochem. Microbiol., 2018, vol. 54, pp. 449–458. https://doi.org/10.1134/S0003683818050125

    Article  CAS  Google Scholar 

  13. Palma-Guerrero, J., Lopez-Jimenez, J.A., Pérez-Berná, A.J., Huang, I.C., Jansson, H.B., Salinas, J., Villalaín, J., Read, N.D., and Lopez-Llorca, L.V., Membrane fluidity determines sensitivity of filamentous fungi to chitosan, Mol. Microbiol., 2010, vol. 75, pp. 1021–1032. https://doi.org/10.1111/j.1365-2958.2009.07039.x

    Article  CAS  PubMed  Google Scholar 

  14. Poyatos, F., Morales, F., Nicholson, A.W., and Giordano, A., Physiology of biodeterioration on canvas paintings, J. Cell Physiol., 2018, vol. 233, pp. 2741–2751. https://doi.org/10.1002/jcp.26088

    Article  CAS  PubMed  Google Scholar 

  15. Rosado, T., Silva, M., Dias, L., Candeias, A., Gil, M., Mirão, J., Pestana, J., and Caldeira, A.T., Microorganisms and the integrated conservation-intervention process of the renaissance mural paintings from Casas Pintadas in Évora— know to act, act to preserve, J. King Saud Univ.–Sci., 2017, vol. 29, pp. 478–486. https://doi.org/10.1016/j.jksus.2017.09.001

    Article  Google Scholar 

  16. Shagdarova, B., Lunkov, A., Il’ina, A., and Varlamov, V., Investigation of the properties of N-[(2-hydroxy-3-trimethylammonium) propyl] chloride chitosan derivatives, Int. J. Biol. Macromol., 2019, vol. 124, pp. 994–1001. https://doi.org/10.1016/j.ijbiomac.2018.11.209

    Article  CAS  PubMed  Google Scholar 

  17. Shagdarova, B.Ts., Il’ina, A.V., and Varlamov, V.P., Antibacterial activity of alkylated and acylated derivatives of low-molecular weight chitosan, Appl. Biochem. Microbiol., 2016, vol. 52, pp. 222–225. https://doi.org/10.1134/S0003683816020149

    Article  CAS  Google Scholar 

  18. Svirshchevskaya, E.V., Zubareva, A.A., Boyko, A.A., Shustova, O.A., Grechikhina, M.V., Shagdarova, B.Ts., and Varlamov, V.P., Analysis of toxicity and biocompatibility of chitosan derivatives with different physico-chemical properties, Appl. Biochem. Microbiol., 2016, vol. 52, pp. 483–490. https://doi.org/10.1134/S000368381605015X

    Article  CAS  Google Scholar 

  19. Varlamov, V.P., Il’ina, A.V., Shagdarova, B.Ts., Lunkov, A.P., and Mysyakina, I.S., Chitin/chitosan and its derivatives: fundamental problems and practical approaches, Biochemistry (Moscow), 2020, vol. 85, suppl. 1, pp. S154‒S176. https://doi.org/10.1134/S0006297920140084

    Article  CAS  PubMed  Google Scholar 

  20. Vengurlekar, S., Sharma, R., and Trivedi, P., Efficacy of some natural compounds as antifungal agents, Pharmacognosy Reviews, 2012, vol. 6, pp. 91–99. https://doi.org/10.4103/0973-7847.99942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xing, K., Zhu, X., Peng, X., and Qin, S., Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review, Agron. Sustain. Dev., 2015, vol. 35, pp. 569–588. https://doi.org/10.1007/s13593-014-0252-3

    Article  CAS  Google Scholar 

  22. Yevlampieva, N.P., Gubarev, A.S., Gorshkova, M.Yu., Okrugin, B.M., and Ryumtsev, E.I., Hydrodynamic behavior of quaternized chitosan at acidic and neutral pH, J. Polym. Res., 2015, vol. 22, p. 166. https://doi.org/10.1007/s10965-015-0802-7

    Article  CAS  Google Scholar 

  23. Zhgun, A.A., Nuraeva, G.K., Dumina, M.V., Voinova, T.M., Dzhavakhiya, V.V., and Eldarov, M.A., 1,3-Diaminopropane and spermidine upregulate lovastatin production and expression of lovastatin biosynthetic genes in Aspergillus terreus via LaeA regulation, Appl. Biochem. Microbiol., 2019, vol. 55, pp. 244–255. https://doi.org/10.1134/S0003683819020170

    Article  Google Scholar 

  24. Zhgun, A.A., Ivaniva, M.A., Domracheva, A.G., Novak, M.I., Elidarov, M.A., Skryabin, K.G, and Bartoshevich, Yu.E., Genetic transformation of the mycelium fungi Acremonium chrysogenum,Appl. Biochem. Microbiol., 2008, vol. 44, pp. 600−607. https://doi.org/10.1134/S0003683808060070

    Article  CAS  Google Scholar 

  25. Zhgun, A., Avdanina, D., Shumikhin, K., Simonenko, N., Lyubavskaya, E., Volkov, I., and Ivanov, V., Detection of potential biodeterioration risks for tempera painting in 16th century exhibits from State Tretyakov Gallery, PLoS One, 2020, vol. 15. № 4. e0230591. https://doi.org/10.1371/journal.pone.0230591                                                                                                       Translated by P. Sigalevich

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was partially supported by the Russian Foundation for Basic Research, projects nos. 20-016-00205 (obtaining the chitosan samples) and 17-29-04349 (determination of antifungal activity). G.K. Nuraeva is grateful to the Ministry of Science and Higher Education of the Russian Federation for support of the work on cultivation of filamentous fungi within the framework of the state contract no. 075-00337-20-03 (project identifier FSMG-2020-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhgun.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhgun, A.A., Avdanina, D.A., Shagdarova, B.T. et al. Search for Efficient Chitosan-Based Fungicides to Protect the 15th‒16th Centuries Tempera Painting in Exhibits from the State Tretyakov Gallery. Microbiology 89, 750–755 (2020). https://doi.org/10.1134/S0026261720060193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720060193

Keywords:

Navigation