Skip to main content
Log in

Pathways of 3-Chlorobenzoate Degradation by Rhodococcus opacus strains 1CP and 6a

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract—

3-Chlorobenzoic acid (3-CBA) is widely used as a precursor/preservative in industry and agriculture and is therefore a known environmental contaminant. The key stages of 3-CBA decomposition by Rhodococcus opacus strains 1CP and 6a were studied. Comparative characterization of the substrate specificity of 3-chlorobenzoate 1,2-dioxygenase (3-CBA 1,2-DO), induced in the strains grown in the presence of 3‑CBA, was carried out. These enzymes were established to have a wider substrate specificity than the benzoate 1,2-dioxygenase (1,2-BDO) of R. opacus strain 1CP, which is induced during growth of R. opacus strain 1CP in the presence of benzoate. Benzoate, 3-CBA, and 3,4-dihydroxybenzoate served as substrates for 3‑CBA 1,2-DO. During the degradation of 3-CBA by R. opacus 1CP cells, both 3-chloro- and 4-chlorocatechol (3-CCat and 4-CCat) were detected. R. opacus 6a efficiently degraded 3-CBA without accumulation of intermediates. The difference in the pathways of 3-CBA degradation by these strains was shown: via the pathway of ortho-cleavage of 3-chlorocatechol in R. opacus 1CP and of 4-chlorocatechol in R. opacus 6a. In the genome of the strain R. opacus 6a, the genes encoding chlorocatechol 1,2-dioxygenase and chloromuconate cycloisomerase were found, which were 98-99% identical to the genes of R. opacus 1CP encoding 4‑chlorocatechol 1,2-dioxygenase (4-CCat 1,2-DO) and 3-chloromuconate cycloisomerase (3-CMCI) of the modified ortho-cleavage pathway for conversion of 4-chlorocatechol (the intermediate of 4-chlorophenol degradation). It was shown for the strains under study that implementation of different pathways for 3-CBA decomposition was predestined not by the metabolic capabilities of bacteria, but by the substrate specificity of 3-CBA 1,2-DO, the enzyme that initiates 3-CBA degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Abbasian, F., Lockington, R., Megharaj, M., and Naidu, R., A review on the genetics of aliphatic and aromatic hydrocarbon degradation, Appl. Biochem. Biotechnol., part A: Enzyme Eng. Biotechnol., 2016, vol. 178, pp. 224–250.

    CAS  Google Scholar 

  2. Adebusoye, S.A., Biological degradation of 4-chlorobenzoic acid by a PCB-metabolizing bacterium through a pathway not involving (chloro)catechol, Biodegradation, 2017, vol. 28, pp. 37–51.

    Article  CAS  Google Scholar 

  3. Ajithkumar, P.V. and Kunhi, A.A.M., Pathways for 3-chloro- and 4-chlorobenzoate degradation in Pseudomonas aeruginosa 3mT, Biodegradation, 2000, vol. 11, pp. 247–261.

    Article  CAS  Google Scholar 

  4. Aken, B.V., Correa, P.A., and Schnoor, J.L., Phytoremediation of polychlorinated biphenyls: new trends and promises, Environ. Sci. Technol., 2010, vol. 44, pp. 2767–2776.

    Article  Google Scholar 

  5. Baggi, G. and Zangrossi, M., Assessment of the biodegradative potential versus chlorobenzoates as single or mixed compounds in a stable microbial consortium, Annu. Rev. Microbiol., 2001, vol. 51, pp. 179–188.

    CAS  Google Scholar 

  6. Boyle, A.W., Silvin, C.J., Hassett, J.P., Nakas, J.P., and Tanenbaum, S.W., Bacterial PCB degradation, Biodegradation, 1992, vol. 3, pp. 285–298.

    Article  CAS  Google Scholar 

  7. Engesser, K.H., Auling, G., Busse, J., and Knackmusss, H.-J., 3-Fluorobenzoate enriched bacterial strain FLB300 degrades benzoate and all three isomeric monofluorobenzoates, Arch. Microbiol., 1990, vol. 153, pp. 193–199.

    Article  CAS  Google Scholar 

  8. Field, J.A. and Sierra-Alvarez, R., Microbial transformation and degradation of polychlorinated biphenyls, Environ. Pollut., 2008, vol. 155, pp. 1–12.

    Article  CAS  Google Scholar 

  9. Field, J.A. and Sierra-Alvarez, R., Microbial transformation of chlorinated benzoates, Rev. Environ. Sci. Bio/Technol., 2008, vol. 7, pp. 191–210.

    Article  CAS  Google Scholar 

  10. Gorlatov, S.N., Maltseva, O.V., Shevchenko, V.I., and Golovleva, L.A., Degradation of chlorophenols by a culture of Rhodococcus erythropolis, Microbiology (Moscow), 1989, vol. 58, pp. 647–651.

    Google Scholar 

  11. Gribble, G.W., The abundant natural sources and uses of chlorinated chemicals, Am. J. Public Health, 1994, vol. 84, p. 1183.

    Article  CAS  Google Scholar 

  12. Gröning, J.A.D., Roth, C., Kaschabek, S.R., Sträter, N., and Schlömann, M., Recombinant expression of a unique chloromuconolactone dehalogenase ClcF from Rhodococcus opacus 1CP and identification of catalytically relevant residues by mutational analysis, Arch. Biochem. Biophys., 2012, vol. 526, pp. 69–77.

    Article  Google Scholar 

  13. Harayama, S., Rekik, M., Bairoch, A., Neidle, E.L., and Ornston, L.N., Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases, J. Bacteriol., 1991, vol. 173, pp. 7540–7548.

    Article  CAS  Google Scholar 

  14. Hartmann, J., Reineke, W., and Knackmuss, H.-J., Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad, Appl. Environ. Microbiol., 1979, vol. 37, pp. 421–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Horvath, R.S. and Alexander, M., Cometabolism of meta-chlorobenzoate by an Arthrobacter, Appl. Microbiol., 1970, vol. 20, pp. 254–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ichihara, A., Adachi, K., Hosokawa, K., and Takeda, Y., The enzymatic hydroxylation of aromatic carboxylic acids; substrate specificities of anthranilate and benzoate oxidases, J. Biol. Chem., 1962, vol. 237, pp. 2296–2302.

    CAS  PubMed  Google Scholar 

  17. Ihn, W. Janke, D., and Tresselt, D., Critical steps in degradation of chloroaromatics by rhodococci. III. Isolation and identification of accumulating intermediates and dead-end products, J. Basic Microbiol., 1989, vol. 29, pp. 291–297.

    Article  CAS  Google Scholar 

  18. Janke, D., Al-Mofarji, T., and Schukat, B., Critical steps in degradation of chloroaromatics by rhodococci. II. Whole-cell turnover of different monochloroaromatic non-growth substrates by Rhodococcus sp. An 117 and An 213 in the absence/presence of glucose, J. Basic Microbiol., 1988a, vol. 28, pp. 519–528.

    Article  CAS  Google Scholar 

  19. Janke, D., Al-Mofarji, T., Straube, G., Schumann, P., and Prauser, H., Critical steps in degradation of chloroaromatics by rhodococci. I. Initial enzyme reactions involved in catabolism of aniline, phenol and benzoate by Rhodococcus sp. An 117 and An 213, J. Basic Microbiol., 1988b, vol. 28, pp. 509–518.

    Article  CAS  Google Scholar 

  20. Janke, D. and Ihn, W., Cometabolic turnover of aniline, phenol and some of their monochlorinated derivatives by the Rhodococcus mutant strain AM 144, Arch. Microbiol., 1989, vol. 152, pp. 347–352.

    Article  CAS  Google Scholar 

  21. Janke, D., Ihn, W., and Tresselt, D., Critical steps in degradation of chloroaromatics by rhodococci IV. Detailed kinetics of substrate removal and product formation by resting pre-adapted cells, J. Basic Microbiol., 1989, vol. 29, pp. 305–314.

    Article  CAS  Google Scholar 

  22. Kitagawa, W., Miyauchi, K., Masai, E., and Fukuda, M., Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1, J. Bacteriol., 2001, vol. 183, pp. 6598–6606.

    Article  CAS  Google Scholar 

  23. Konovalova, E.I., Solyanikova, I.P., and Golovleva, L.A., Degradation of 4-chlorophenol by bacterium Rhodococcus opacus 6a, Microbiology (Moscow), 2009, vol. 78, pp. 805–807.

    Article  CAS  Google Scholar 

  24. Kweon, O., Kim, S.J., Freeman, J.P., Song, J., Baek, S., and Cerniglia, C.E., Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1, mBio, 2010, vol. 1. pii: e00135-10.

    Article  Google Scholar 

  25. Liang, B., Jiang, J., Zhang, J., Zhao, Y., and Li, S., Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role, Crit. Rev. Microbiol., 2012, vol. 38, pp. 95–110.

    Article  CAS  Google Scholar 

  26. Moiseeva, O.V., Linko, E.V., Baskunov, B.P., and Golovleva, L.A., Degradation of 2-chlorophenol and 3-chlorobenzoate by Rhodococcus opacus 1CP, Microbiology (Moscow), 1999, vol. 68, pp. 400–405.

    CAS  Google Scholar 

  27. Moiseeva, O.V., Solyanikova, I.P., Kaschabek, S., Thiel, M., Golovleva, L.A., and Schlömann, M., A new modified ortho-cleavage pathway of 2-chlorophenol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidences, J. Bacteriol., 2002, vol. 184, pp. 5282–5292.

    Article  CAS  Google Scholar 

  28. Moisseeva, O.V., Belova, O.V., Solyanikova, I.P., Schlömann, M., and Golovleva, L.A., Enzymes of novel modified ortho-pathway of Rhodococcus opacus 1CP, utilizing 2-chlorophenol, Biochemistry (Moscow), 2001, vol. 66, pp. 548–555.

    Google Scholar 

  29. Parales, R.E. and Resnick, S.M., Aromatic ring hydroxylating dioxygenases, Mol. Biol. Emerg. Iss., 2006, vol. 4, pp. 287–340.

    Google Scholar 

  30. Reineke, W. and Knackmuss, H.-J., Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid, Biochim. Biophys. Acta,1978, vol. 542, pp. 412–423.

    Article  CAS  Google Scholar 

  31. Schlömann, M., Evolution of chlorocatechol catabolic pathways, Biodegradation, 1994, vol. 5, pp. 301–321.

    Article  Google Scholar 

  32. Schlömann, M., Schmidt, E., and Knackmuss, H.-J., Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria, J. Bacteriol., 1990, vol. 172, pp. 5112–5118.

    Article  Google Scholar 

  33. Solyanikova, I.P., Borzova, O.V., Emelyanova, E.V., Shumkova, E.S., Prisyazhnaya, N.V., Plotnikova, E.G., and Golovleva, L.A., Dioxygenases of chlorobiphenyl-degrading species Rhodococcus wratislaviensis G10 and chlorophenol-degrading species Rhodococcus opacus 1CP induced in benzoate-grown cells and genes potentially involved in these processes, Biochemistry (Moscow), 2016, vol. 81, pp. 986–999.

    CAS  PubMed  Google Scholar 

  34. Solyanikova, I.P., Emelyanova, E.V., Borzova, O.V., and Golovleva, L.A., Benzoate degradation by Rhodococcus opacus 1CP after a dormancy: characterization of dioxygenases involved in the process, J. Environ. Sci. Health. Part B, 2016, vol. 51, pp. 182–191.

    Article  CAS  Google Scholar 

  35. Solyanikova, I.P., Maltseva, O.V., Vollmer, M.D., Golovleva, L.A., and Schlömann, M., Characterization of muconate and chloromuconate cycloisomerase from Rhodococcus erythropolis 1CP: indications for functionally convergent evolution among bacterial cycloisomerases, J. Bacteriol., 1995, vol. 177, pp. 2821–2826.

    Article  CAS  Google Scholar 

  36. Solyanikova, I.P., Plotnikova, E.G., Shumkova, E.S., Robota, I.V., Prisyazhnaya, N.V., and Golovleva, L.A., Chloromuconolactone dehalogenase ClcF of actinobacteria, J. Environ. Sci. Health. Part B, 2014, vol. 49, pp. 422–431.

    Article  CAS  Google Scholar 

  37. Thiel, M., Entwicklung von PCR-Primern zum Nachweis von Genen des Chloraromaten-Abbaus in mikrobiellen Lebensgemeinschaften, PhD Thesis, Freiberg: Techn. Univ. Bergakademie, 2004.

  38. Wang, H., Hu, J., Xu, K., Tang, X., Xu, X., and Shen, C., Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp., Biodegradation, 2018, vol. 29, pp. 1–10. https://doi.org/10.1007/s10532-017-9809-6

    Article  CAS  PubMed  Google Scholar 

  39. Willes, R.F., Nestmann, E.R., Miller, P.A., Orr, J.C., and Munro, I.C., Scientific principles for evaluating the potential for adverse effects from chlorinated organic chemicals in the environment, Regul. Toxicol. Pharmacol., 1993, vol. 18, pp. 313–356.

    Article  CAS  Google Scholar 

  40. Xu, C., Zang, X., Hang, X., Liu, X., Yang, H., Liu, X., and Jiang J., Degradation of three monochlorobenzoate isomers by different bacteria isolated from a contaminated soil, Int. Biodeter. Biodegr., 2017, vol. 120, pp. 192–202. https://doi.org/10.1016/j.ibiod.2017.02.020

    Article  CAS  Google Scholar 

  41. Yamaguchi, M. and Fujisawa, H., Reconstitution of iron-sulfur cluster of NADH-cytochrome c reductase, a component of benzoate 1,2-dioxygenase system from Pseudomonas arvilla C-1, J. Biol. Chem., 1981, vol. 256, pp. 6783–6787.

    CAS  PubMed  Google Scholar 

  42. Zhang, G., Yang, X., Xie, F., Chao, Y., and Qian, S., Cometabolic degradation of mono-chloro benzoic acids by Rhodococcus sp. R04 grown on organic carbon sources, World J. Microbiol. Biotechnol., 2009, vol. 25, pp. 1169–1174.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are very grateful to Prof. Dr. M. Schlömann (TU Bergakademie, Freiberg, Germany) for the possibility of working on gene cloning at his laboratory and to Tech. Acc. J. Gröning for assistance in the work and for providing the strain Escherichia coli DH5α.

Funding

The work was supported by the Russian Science Foundation (grant no. 14-14-00368) and by the DAAD Stipendium of I.P. Solyanikova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Solyanikova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Abbreviations: 1,2-BDO, benzoate 1,2-dioxygenase; DLH, dienelactone hydrolase; 3,5- and 4,5-DCCat, 3,5- and 4,5-dichlorocatechols; OD, optical density; 3-MCat and 4-MCat, 3- and 4‑methylcatechol; Cat, catechol; 1,2-CDO, catechol 1,2-dioxygenase; PCB – polychlorinated biphenyl; 3-CA, 3-chloroaniline; CBA, chlorobenzoic acid; 2-CBA, 2-chlorobenzoic acid; 3‑CBA, 3-chlorobenzoic acid; 4-CBA, 4-chlorobenzoic acid; 3‑CBA 1,2-DO, 3-chlorobenzoate-1,2-dioxygenase; 2-CM, 2‑chloromuconate; 5-CML, 5-chloromuconolactone; CMLD, chloromuconolactone dehalogenase; 3-CMCI, 3‑chloromuconate cycloisomerase; 3-CCat and 4-CCat, 3- and 4-chlorocatechol; 4-CCat 1,2-DO, 4-chlorocatechol 1,2-dioxygenase; 2-CP, 2-chlorophenol; 3-CP, 3-chlorophenol; 4-CP, 4‑chlorophenol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solyanikova, I.P., Emelyanova, E.V., Shumkova, E.S. et al. Pathways of 3-Chlorobenzoate Degradation by Rhodococcus opacus strains 1CP and 6a. Microbiology 88, 563–572 (2019). https://doi.org/10.1134/S002626171905014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002626171905014X

Keywords:

Navigation