Skip to main content
Log in

Improvement of Chitinase Production by Bacillus thuringiensis NM101-19 for Antifungal Biocontrol through Physical Mutation

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Chitinase is one of the most important enzymes due to its diversity and a variety of potential uses. This study is an attempt to enhance chitinase production for antifungal biocontrol by subjecting Bacillus thuringiensis NM101-19 strain grown on shrimp shell wastes to various doses of gamma irradiation. Six mutants (BM-4, BM-6, BM-8, BM-12, BM-15, and BM-17) obtained at gamma ray doses of 40, 60, 80, 100, 120 and 140 Gy, respectively produced higher levels of chitinolytic activities in comparision to the wild-type strain. The BM-15 mutant strain showed the highest chitinase production (65.41 U/mL) which was 2.60 times more than the wild type (25.11 U/mL). Biocontrol efficacy of the mutants was statistically superior to the wild-type strain against all tested phytopathogens. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) PCR techniques, with five primers for each, were used in order to detect the variation in DNA profile between the mutant and wild-type strains in response to gamma-radiation treatments. RAPD and ISSR analysis indicated the appearance and disappearance of DNA polymorphic bands at different gamma ray doses. The results confirmed that the mutagenesis technique is a potent strategy to enhance the chitinase activity for industrial and agricultural purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi, S., Safaie, N., Bakhsh, M.S., and Shahbazi, S., Biocontrol activities of gamma induced mutants of Trichoderma harzianum against some soilborne fungal pathogens and their DNA fingerprinting, Iran. J. Biotech., 2016, vol. 14, pp. 260–269.

    Article  Google Scholar 

  • Adsul, M.G., Bastawde, K.B., and Varma, A.J., Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production, Bioresour. Technol., 2007, vol. 98, pp. 1467–1473.

    Article  PubMed  CAS  Google Scholar 

  • Bansode, V.B. and Bajekal, S.S., Characterization of chitinases from microorganisms isolated from Lonar Lake, Ind. J. Biotech., 2006, vol. 5, pp. 357–363.

    CAS  Google Scholar 

  • Barboza-Corona, J.E., Reyes-Rios, D.M., Salcedo-Hernandez, R., and Bideshi, D.K., Molecular and biochemical characterization of an endochitinase, ChiA-HD73, from Bacillus thuringiensis subsp. kurstaki HD-73, Mol. Biotechnol., 2008, vol. 39, pp. 29–37.

    PubMed  CAS  Google Scholar 

  • Berini, F., Presti, I., Beltrametti, F., Pedroli, M., Varum, K.M., Pollegioni, L., Sjoling, S., and Marinelli, F., Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome, Microb. Cell Fact., 2017, vol. 16, pp. 16–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Budi, S.W., Van Tuinen, D., Arnould, C., Dumas-Gaudut, E., Gianinazzi-Pearson, V., and Gianinazzi, S., Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effect of antagonistic bacterium on cell wall integrity of two soil-borne pathogenic fungi, Appl. Soil. Ecol., 2000, vol. 15, pp. 191–199.

    Google Scholar 

  • Chandrasekaran, R., Revathi, K., Nisha, S., Kirubakaran, S.A., Sathish-Narayanan, S., and Senthil, N.S., Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab., Pestic. Biochem. Physiol., 2012, vol.104, pp. 65–71.

    Article  CAS  Google Scholar 

  • Chang, W.T., Chen, M., and Wang, S.L., An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source, World J. Microbiol. Biotechnol., 2010, vol. 26, pp. 945–950.

    Article  CAS  Google Scholar 

  • De la Vega, L.M., Barboza-Corona, J.E., Aguilar-Uscanga, M.G., and Ramirez-lepe, M., Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. aizawai and its action against phytopathogenic fungi, Can. J. Microbiol., 2006, vol. 52, pp. 651–657.

    Article  PubMed  Google Scholar 

  • Dhananasekaran, S., Palanivel, R., and Pappu, S., Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by α-chitin nanoparticles, J. Adv. Res., 2016, vol. 7, pp. 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Gomaa, E.Z., Chitinase production by Bacillus thuringiensis and Bacillus licheniformis, their potential in antifungal biocontrol, J. Microbiol., 2012, vol. 50, pp. 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Gundry, M., and Vijg, J., Direct mutation analysis by highthroughput sequencing, from germline to low-abundant, somatic variants, Mut. Res., 2012, vol. 729, pp. 1–15.

    Article  CAS  Google Scholar 

  • Hart, L., Zach, S., and Seidl-Seiboth, V., Fungal chitinases, diversity, mechanistic properties and biotechnological potential, Appl. Microbiol. Biotechnol., 2012, vol. 93, pp. 533–543.

    Article  CAS  Google Scholar 

  • Hayes, M., Carney, B., Slater, J., and Bruck, W., Mining marine shellfish wastes for bioactive molecules, chitin and chitosan—Part A, extraction methods, Biotechnol. J., 2008, vol. 3, pp. 871–877.

    Article  PubMed  CAS  Google Scholar 

  • Islam, R., Jeong, Y.T., Ryu, Y.J., Song, C.H., and Lee, Y.S., Isolation, identification and optimal culture conditions of Streptomyces albidoflavus C247 producing antifungal agents against Rhizoctonia solani AG2-2, Mycobiology, 2009, vol. 37, pp. 114–120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamil, Z., Rizk, M., Saleh, M., and Moustafa, S., Isolation and identification of rhizosphere soil chitinolytic bacteria and their potential in antifungal biocontrol, Global J. Mol. Sci., 2007, vol. 2, pp. 57–66.

    Google Scholar 

  • Kavil, S.P., Pallavesam, A., Sumesh, K.M., Bhairappanavar, S.B., Sadashiv, S.O., Chandrashekhar, U., and Catherine, R.P., Improvement of chitinase producing capacity of Shigella sp. by random mutation and altering the nutrient component of production media, World J. Pharm. Sci., 2014, vol. 3, pp. 1717–1726.

    CAS  Google Scholar 

  • Khoushab, F. and Yamabhai, M., Chitin research revisited, Mar. Drugs., 2010, vol. 8, pp. 1988–2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kishore, G.K., Pande, S., and Podile, A.R., Biological control of late leaf spot of peanut, Arachis hypogaea L., with chitinolytic bacteria, Phytopathol., 2005, vol. 95, pp. 1157–1165.

    CAS  Google Scholar 

  • Liu, D., Cai, J., Xie, C., Liu, C., and Chen, Y.H., Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis spp. colmeri, and its biocontrol potential, Enz. Microb. Technol., 2010, vol. 46, pp. 252–256.

    Article  CAS  Google Scholar 

  • Mallakuntla, M.K., Vaikuntapu, P.R., Bhuvanachandra, B., Das, S.N., and Podile, A.R., Transglycosylation by a chitinase from Enterobacter cloacae subsp. cloacae generates longer chitin oligosaccharides, Sci. Rep., 2017, vol. 7, pp. 5113–5125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marsjan, P.A. and Oldenbroek, J.K., Molecular markers, a tool for exploring gene diversity, in The State of the World’s Animal Genetic Resources for Food and Agriculture. FAO Research Report, Rome: FAO, 2007, pp. 359–379.

    Google Scholar 

  • Mohamadi, A.S., Shahbazi, S., and Askari, H., Investigation of γ-radiation on morphological characteristics and antagonist potential of Trichoderma viride against Rhizoctonia solani, Int. Res. J. Appl. Basic Sci., 2014, vol. 8, pp. 329–336.

    Google Scholar 

  • Najafi, M.B. and Pezeshki, P., Bacterial mutation; types, mechanisms and mutant detection methods. A review, Euro. Sci. J., 2013, vol. 4, pp. 1857–7881.

    Google Scholar 

  • Neeraja, C., Anil, K., Purushotham, P., Suma, K., Sarma, P., and Moerschbacher, B.M., Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants, Crit. Rev. Biotechnol., 2010, vol. 30, pp. 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Nurdebyandaru, N., Mubarik, N.R., and Prawasti, T.S., Chitinolytic bacteria isolated from Chili rhizosphere, Chitinase characterization and application as biocontrol for Aphis gossypii, Microb. Ind., 2010, vol. 4, pp. 13–107.

    Google Scholar 

  • Ozgen, A., Sezen, K., Demir, I., Demirbag, Z., and Nalcacioglu, R., Molecular characterization of chitinase genes from a local isolate of Serratia marcescens and their contribution to the insecticidal activity of Bacillus thuringiensis strains, Curr. Microbiol., 2013, vol. 67, pp. 499–504.

    Article  PubMed  CAS  Google Scholar 

  • Raghuwanshi, S., Deswal, D., and Karp M., Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose, Fuel, 2014, vol. 124, pp. 183–189.

    Article  CAS  Google Scholar 

  • Roopavathi, A.S., Vigneshwari, R., and Jayapradha, R., Chitinase, production and applications, J. Chem. Pharm. Res., 2015, vol. 7, pp. 924–931.

    CAS  Google Scholar 

  • Sharma, N., Sharma, K.P., Gaur, R.K., and Gupta, V.K., Role of chitinase in plant defense, Asian J. Biochem., 2011, vol. 6, pp. 29–37.

    Article  CAS  Google Scholar 

  • Shehata, A.I., Phylogenetic diversity of Staphylococcus aureus by random amplification of polymorphic DNA, Aust J. Basic Appl. Sci., 2008, vol. 2, pp. 858–863.

    CAS  Google Scholar 

  • Spadaro, D. and Lodovica, M., Improving the efficacy of biocontrol agents against soil borne pathogens, Crop. Prot., 2005, vol. 24, pp. 601–613.

    Article  Google Scholar 

  • Strange, R.N. and Scott, P.R., Plant disease, a threat to global food security, Ann. Rev. Phytopathol., 2005, vol. 43, pp. 83–116.

    Article  CAS  Google Scholar 

  • Suganthi, M., Arvinth, S., Kumar, R.R., and Chandrashekara, K.N., Detection of chitinase activity and its characterization from Pseudomonas fluorescens of tea rhizosphere, J. Plant Crop., 2015, vol. 43, pp. 236–239.

    Google Scholar 

  • Sun, Y., Liu, W., Han, B., Zhang, J., and Liu, B., Purification and characterization of two types of chitosanase from Microbacterium sp., Biotechnol. Lett., 2006, vol. 28, pp. 1393–1399.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S.L., Chao, C.H., Liang, T.W., and Chen, C.C., Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes, Mar. Biotechnol., 2009, vol. 11, pp. 334–344.

    Article  PubMed  CAS  Google Scholar 

  • Xie, C., Chen, Y., Cai, J., and Liu, C., Essential expression and inducible synthesis polymorphism of chitinase in Bacillus thuringiensis, Sheng. Wu. Gong. Cheng. Xue. Bao., 2010, vol. 26, pp. 1532–1538.

    PubMed  CAS  Google Scholar 

  • Yadav, E., Pathak, D.V., Sharma, S.K., Kumar, M., and Sharma, P.K., Isolation and characterization of mutants of Pseudomonas maltophila PM-4 altered in chitinolytic activity and antagonistic activity against root rot pathogens of clusterbean, Cyamopsis tetragonoloba, Ind. J. Microbiol., 2007, vol. 47, pp. 64–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Z. Gomaa.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, E.Z., El-Mahdy, O.M. Improvement of Chitinase Production by Bacillus thuringiensis NM101-19 for Antifungal Biocontrol through Physical Mutation. Microbiology 87, 472–485 (2018). https://doi.org/10.1134/S0026261718040094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718040094

Keywords

Navigation