Skip to main content
Log in

Effect of prebiotic substances on growth, fatty acid profile and probiotic characteristics of Lactobacillus brevis NM101-1

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Utilization of both probiotics and prebiotics in diet supplements and food products has gained a great interest because of their health benefits. In the present study, the effect of 6 commercially available prebiotic substances on the growth, acidifying activity, fatty acid profile and probiotic characteristics of Lactobacillus brevis NM101-1 was investigated in vitro for the development of synbiotic preparations. The results indicated the selective fermentability of prebiotics by the probiotic bacterial strain and absence of metabolism by pathogenic bacteria. Garlic and onion extracts as well as chicory flour as sources of inulin were the best carbon sources for growth and acidifying activity of the strain. The addition of onion extract to the medium exerted a significant influence on acetic acid production. However, the highest biosynthesis of lactic acid was recorded in the presence of glucose. Supplementation of MRS medium with prebiotic substances caused an increase in the ratio of unsaturated to saturated fatty acids of bacterial cells. Furthermore, resistance to gastrointestinal conditions, hydrophobicity and inhibition of bacterial pathogens as international guidelines for probiotics were enhanced by a combination of probiotic L. brevis and prebiotics which indicated that a convenient prebiotic substance have to be chosen for each probiotic bacterial strain for potential synbiotic preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adebola, O., Corcoran, O., and Morgan, W. A., Protective effects of prebiotics inulin and lactulose from cytotoxicity and genotoxicity in human colon adenocarcinoma cells, Food Res. Int., 2013, vol. 52, pp. 269–274.

    Article  CAS  Google Scholar 

  • AOAC, 1997, Official Methods of Analysis, 16th ed., Gaithersburg: AOAC international.

    Google Scholar 

  • Arboleya, S., Ruas-Madiedo, P., Margolles, A., Solís, G., Salminen, S., de los Reyes-Gavilán, C.G., and Gueimonde, M., Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk, Int. J. Food Microbol., 2011, vol. 149, pp. 28–36.

    Article  CAS  Google Scholar 

  • Averina, O.V. and Danilenko, V.N., Human intestinal microbiota and its role in the development and functioning of the nervous system, Microbiology (Moscow), 2017, vol. 86, no. 1, pp. 1–19.

    Article  CAS  Google Scholar 

  • Broekaert, W.F., Courtin, C.M., Verbeke, K., Van De Wiel, T., Verstraete, W., and Delcour, J.A., Prebiotic and other health related effects of cereal derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides, Crit. Rev. Food Sci. Nut., 2011, vol. 51, pp.178–194.

    Article  CAS  Google Scholar 

  • Corcoran, B.M., Stanton, C., Fitzgerald, G.F., and Ross, R.P., Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice, Microbiology (UK), 2007, vol. 153, pp. 291–299.

    Article  CAS  Google Scholar 

  • Cruz, A.G., Faria, J.A.F., Walter, E.H.M., Andrade, R.R., Cavalcanti, R.N., and Oliveira, C.A.F., Optimization of the processing of probiotic yoghurt added with glucose oxidase using the response surface methodology, J. Dairy Sci., 2010, vol. 93, pp. 1058–1069.

    Article  Google Scholar 

  • De Preter, V., Hamer, H.M., Windey, K., and Verbeke, K., The impact of pre-and/or probiotics on human colonic metabolism: does it affect human health?, Mol. Nut. Food Res., 2011, vol. 55, pp. 46–57.

    Article  Google Scholar 

  • Dinan, T.G., Stanton, C., and Cryan, J.F., Psychobiotics: a novel class of psychotropic, Biol. Psychiat., 2013, vol. 74, pp. 720–726.

    Article  CAS  PubMed  Google Scholar 

  • Fanning, S., Hall, L.J., Cronin, M., Zomer, A., MacSharry, J., Goulding, D., Motherway, M.O., Shanahan, F., Nally, K., van Sinderen, D., and Dougan, G., Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 2108–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO/WHO, Probiotics in food. Health and nutritional properties and guidelines for evaluation, FAO Food and Nutrition Paper, 2006, vol. 85, ISBN: 92-5-105513

  • Fozo, E.M., Kajfasza, J.K., and Quivey R.G., Low pH induced membrane fatty acid alterations in oral bacteria, FEMS Microbiol. Lett., 2004, vol. 238, pp. 291–295.

    Article  CAS  PubMed  Google Scholar 

  • Goh, Y.J. and Klaenhammer, T.R., Functional roles of aggregation promoting factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM, Appl. Environ. Microbiol., 2010, vol. 76, pp. 5005–5012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh, Y.J., Lee, J.H., and Hutkins, R.W., Functional analysis of the fructooligosaccharides utilization operon in Lactobacillus paracasei 1195, Appl. Environ. Microbiol., 2007, vol. 73, pp. 5716–5724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamrun, N.I., Touaha, A., Fahmida, A., and Nazneen, N.I., Characterization and confirmation of Lactobacillus spp. from selective regional yoghurts for probiotic and interference with pathogenic bacterial growth, Asian J. Biol. Sci., 2016, vol. 9, pp. 1–9.

    Article  Google Scholar 

  • Kates, M. and Eberhardt, F.M., Isolation and fractionation of leaf phosphatides, Can. J. Botany, 957, vol. 35, pp. 895–905.

  • Kimoto-Nira, H., Kobayashi, M., Nomura, M., Sasaki, K., and Suzuki, C., Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media, Int. J. Food Microbiol., 2009, vol. 131, pp.183–188.

    Google Scholar 

  • Li, B.W., Andrews, K.W., and Pehrsson, P.R., Individual sugars, soluble, and insoluble dietary fiber contents of 70 high consumption foods, J. Food Comp. Anal., 2002, vol. 15, pp. 715–723.

    Article  CAS  Google Scholar 

  • Li, J., Zhang, L., Han, X., Yi, H., Guo, C., Zhang, Y., Du, M., Luo, X., Zhang, Y., and Shan, Y., Effect of incubation conditions and possible intestinal nutrients on cis-9, trans-11 conjugated linoleic acid production by Lactobacillus acidophilus F0221, Int. Dairy J., 2013, vol. 29, pp. 93–98.

    Article  Google Scholar 

  • Lowry, O.H., Rosebrough, N., Farr, A.L., and Randall, R.J., Protein measurement with Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  • Lyte, M., Microbial endocrinology and nutrition: a perspective on new mechanisms by which diet can influence gut-to brain-communication, Pharm. Nut., 2013, vol. 1, pp. 35–39.

    CAS  Google Scholar 

  • Macfarlane, G.T., Steed, H., and Macfarlane, S., Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics, J. Appl. Microbiol., 2008, vol. 104, pp. 305–344.

    CAS  PubMed  Google Scholar 

  • Marco, M.L., Pavan, S., and Kleerebezem, M., Towards understanding molecular modes of probiotic action, Curr. Opin. Biotechnol., 2006, vol. 17, pp. 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Mayo, B., Aleksandrzak-Piekarczyk, T., Fernández, M., Kowalczyk, M., Álvarez-Martín, P., and Bardowski, J., Updates in the metabolism of lactic acid bacteria, in Biotechnology of Lactic Acid Bacteria: Novel Applications, Mozzi, F., Raya, R.R., and Vignolo, G.M., Eds., 2010, Iowa: Wiley, pp. 3–33.

    Chapter  Google Scholar 

  • Mishra, S. and Mishra, H.N., Effect of synbiotic interaction of fructooligosaccharide and probiotics on the acidification profile, textural and rheological characteristics of fermented soy milk, Food Bioprocess Technol., 2013, vol. 6, pp. 3166–3176.

    Article  CAS  Google Scholar 

  • Morris, C. and Morris, G., The effect of inulin and fructooligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: a review, Food Chem., 2012, vol. 133, no. 2, pp. 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Muňoz-Quezada, S., Chenoll, E., Vieites, J.M., Bermúdez-Brito, S.M., Gomez-Llorente, C., Matencio, E., Bernal, M.J., Romero, F., Suárez, A., Ramón, D., and Gil, A., Isolation, identification and characterisation of three novel probiotic strains, Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036, from the faeces of exclusively breast-fed infants, Brit. J. Nut., 2013, vol. 109, pp. 51–62.

    Article  Google Scholar 

  • Ng, S.C., Hart, A.L., Kamm, M.A., Stagg, A.J., and Knight, S.C., Mechanisms of action of probiotics: recent advances, Inflamm. Bowel. Dis., 2009, vol. 15, pp. 300–310.

    Article  CAS  PubMed  Google Scholar 

  • Nobre, C., Teixeira, J.A., and Rodrigues, L.R., New trends and technological challenges in the industrial production and purification of fructo-oligosaccharides, Crit. Rev. Food Sci. Nutr., 2015, vol. 55, no. 10, pp. 1444–1455.

    Article  CAS  PubMed  Google Scholar 

  • Oleskin, A.V., El’-Registan, G.I., and Shenderov, B.A., Role of neuromediators in the functioning of the human microbiota: “business talks” among microorganisms and the microbiota-host dialogue, Microbiology (Moscow), 2016, vol. 85, no. 1, pp. 3–22.

    Article  CAS  Google Scholar 

  • Pan, W.H., Li, P.L., and Liu, Z.Y., The correlation between surface hydrophobicity and adherence of Bifidobacterium strains from centenarians’ faeces, Anaerobe, 2006, vol. 12, pp. 148–152.

    Article  CAS  PubMed  Google Scholar 

  • Pan, X., Wu, T., Zhang, L., Cai, L., and Song, Z., Influence of oligosaccharides on the growth and tolerance capacity of lactobacilli to simulated stress environment, Lett. Appl. Microbiol., 2009, vol. 48, pp. 362–367.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, J.A. and Burkholder K.M., Application of prebiotics and probiotics in poultry production, Poul. Sci., 2003, vol. 82, no. 4, pp. 627−631.

    Article  CAS  Google Scholar 

  • Pinheirode, S.O., Perego, P., Nogueira O.M., and Converti, A., Growth, organic acids profile and sugar metabolism of Bifidobacterium lactisin co-culture with Streptococcus thermophilus: the inulin effect, Food Res. Int., 2012, vol. 48, pp. 21–27.

    Article  Google Scholar 

  • Prasanna, P.H.P., Grandison, A.S., and Charalampopoulos, D., Bifidobacteria in milk products: an overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits, Food Res. Int., 2014, vol. 55, pp. 247–262.

    Article  CAS  Google Scholar 

  • Roberfroid, M., Gibson, G.R., Hoyles, L., McCartney, A.L., Rastall, R., and Rowland, I., Prebiotic effects: metabolic and health benefits, British J. Nut., 2010, vol. 104, pp. 1–63.

    Article  Google Scholar 

  • Rodrigues, D., Rocha-Santos, T.A.P., Gomes, A.M., Goodfellow, B.J., and Freitas, A.C., Lypolisis in probiotic and synbiotic cheese: the influence of probiotic bacteria, prebiotic compounds and ripening time on free fatty acid profiles, Food Chem., 2012, vol. 131, pp. 1414–1421.

    Article  CAS  Google Scholar 

  • Roy, C.C., Kien, C.L., Bouthillier, L., and Levy, E., Shortchain fatty acids: ready 485 for prime time? Nut. Clin. Prac., 2006, vol. 21, pp. 351–366.

    Article  Google Scholar 

  • Rushdy, A.A., and Gomaa, E.Z., Antimicrobial compounds produced by probiotic Lactobacillus brevis isolated from dairy products, Ann. Microbiol., 2013, vol. 63, pp. 81–90.

    Article  CAS  Google Scholar 

  • Saarela, M., Hallamaa, K., Mattila-Sandholm, T., and Mättö, J., The effect of lactose derivatives lactulose, lactitol and lactobionic acid on the functional and technological properties of potentially probiotic Lactobacillus strains, Int. Dairy J., 2003, vol. 13, pp. 291–302.

    Article  CAS  Google Scholar 

  • Sánchez, B., Ruiz, L., Gueimonde, M., Ruas-Madiedo, P., and Margolles, A., Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences, Pharmacol. Res., 2013, vol. 69, pp. 127–136.

    Article  PubMed  Google Scholar 

  • Saulnier, D.M., Molenaar, D., de Vos, W.M., Gibson, G.R., and Kolida, S., Identification of prebiotic fructooligosaccharides metabolism in Lactobacillus plantarum WCFS1 through microarrays, Appl. Environ. Microbiol., 2007, vol. 73, pp. 1753−1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schillinger, U., Guigas, C., and Holzapfel, W.H., In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products, Int. Dairy J., 2005, vol. 12, pp. 1289–1297.

    Article  Google Scholar 

  • Schrezenmeir, J. and de Vrese, M., Probiotics, prebiotics, and synbiotics—approaching a definition, Am. J. Clin. Nutr., 2001, vol. 73, pp. 361–364.

    Google Scholar 

  • Touré, R., Kheadr, E., Lacroix, C., Moroni, O., and Fliss, I., Production of antibacterial substances by bifidobacterial isolates from infant stool active against Listeria monocytogenes, J. Appl. Microbiol., 2003, vol. 95, pp. 1058–1069.

    Article  PubMed  Google Scholar 

  • Tuo, Y.F., Yu, Y.L., Ai, L.Z., Wu, Z.G., Guo, B.H., and Chen, W., Aggregation and adhesion properties of 22 Lactobacillus strains, J. Dairy Sci., 2013, vol. 96, pp. 4252–4257.

    Article  CAS  PubMed  Google Scholar 

  • Tymczyszyn, E.E., Santos, M.I., Costa, M.D.C., Illanes, A., and Gomez-Zavaglia, A., History, 419 synthesis, properties, applications and regulatory issues of prebiotic oligosaccharides, in Carbohydrates 420 Applications in Medicine, 2014, Gil, M.H., Ed., Kerala: Research Signpost.

    Google Scholar 

  • Van den Abbeele, P., van de Wiele, T., Grootaert, C., Verstraete, W., Gérard, P., Bruneau, A., Rabot, S., and Possemiers, S., Arabinoxylans and inulin modulate the luminal and mucosa-associated bacteria in vitro and in vivo, in Dietary Fibre: New Frontiers for Food and Health, van der Kamp, J.W., Jones, J.M., McCleary, B.V., and Topping, D.L., Eds., Waltham: Wageningen Academic, 2010, pp. 233–249.

    Google Scholar 

  • Van den Ende, W., Peshev, D., and de Gara, L., Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract, Trends Food Sci. Technol., 2011, vol. 22, pp. 689–697.

    Article  Google Scholar 

  • Vitali, B., Ndagijimana, M., Maccaferri, S., Biagi, E., Guerzoni, M. E., and Brigidi, P., An in vitro evaluation of the effects of probiotics and prebiotics on the metabolic profile of human micorbiota, Anaerobe, 2012, vol. 18, pp. 386–391.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Huang, L., Lu, Y.M., and Xu, M., Research on fatty acid composition of three species of marine bacteria, J. Ocean Univ., 2011, vol. 41, pp. 252–258.

    Google Scholar 

  • WHO/FAO, Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Report of a Joint FAO/WHO Expert Consultation, Geneva, World Health.

  • Wolcott, R. and Ehrlich, G., Biofilms and chronic infections, JAMA, 2001, pp. 2682−2684.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Z. Gomaa.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, E.Z. Effect of prebiotic substances on growth, fatty acid profile and probiotic characteristics of Lactobacillus brevis NM101-1. Microbiology 86, 618–628 (2017). https://doi.org/10.1134/S0026261717050095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261717050095

Keywords

Navigation