Skip to main content
Log in

Changes in the phase variant spectra in the populations of lactic acid bacteria under antibiotic treatment

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Effect of the antibiotics kanamycin and ampicillin on the growth and phase variation of the populations of four strains of lactic acid bacteria (Lactobacillus sp. M76AT, L. casei MB, Enterococcus faecium M, and E. faecium M3185) was studied. The presence of antibiotics in the medium resulted in a dose-dependent decrease in viable cell numbers and in partial or complete substitution of the dominant S variant with the minor Sm and Sb variants. The variants differed in colony morphology, as well as in some physiological, biochemical, biotechnological, and probiotic characteristics. The Sm type variants of all strains exhibited the highest resistance to antibiotics. High production of exopolysaccharides was found in Sb variants of lactobacilli and in S variants of enterococci. The highest antibacterial activity was found in Sm variants of lactobacilli, especially in Lactobacillus sp. M76AT. The latter is biotechnologically the most promising strain, since all variants fermented milk yielding the products with uniformly pronounced functional and organoleptic properties. These patterns are of importance for the understanding of the mechanisms of antibiotic resistance and for selection of the variants with desired properties, as well as for quality control of the lactic acid bacteria starter cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woude, M.W., Phase variation: how to create and coordinate population diversity, Curr. Opin. Microbiol., 2011, vol. 14, no. 2, pp. 205–211.

    Article  PubMed  Google Scholar 

  2. Magdanova, L.A. and Golyasnaya, N.V., Heterogeneity as an adaptive trait of microbial populations, Microbiology (Moscow), 2013, vol. 82, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  3. Zgur-bertok, D., Phenotypic heterogeneity in bacterial populations, Acta Agric. Slovenica, 2007, vol. 90, pp. 17–24.

    Google Scholar 

  4. Mulyukin, A.L., Kozlova, A.N., and El’-Registan, G.I., Properties of the phenotypic variants of Pseudomonas aurantiaca and P. fluorescens, Microbiology (Moscow), 2008, vol. 77, no. 6, pp. 681–690.

    Article  CAS  Google Scholar 

  5. Pogorelova, A.Yu., Mulyukin, A.L., Antonyuk, L.P., Gal’chenko, V.F., and El’-Registan, G.I., Phenotypic variability in Azospirillum brasilense strains Sp7 and Sp245: association with dormancy and characteristics of the variants, Microbiology (Moscow), 2009, vol. 78, no. 5, pp. 559–568.

    Article  CAS  Google Scholar 

  6. Kryazhevskikh, N.A., Demkina, E.V., Loiko, N.G., Baslerov, R.V., Kolganova, T.V., Soina, V.S., Manucharova, N.A., Gal’chenko, V.F., and El’-Registan, G.I., Comparison of the adaptive potential of the Arthrobacter oxydans and Acinetobacter lwoffii isolates from permafrost sedimentary rock and the analogous collection strains, Microbiology (Moscow), 2013, vol. 82, no. 1, pp. 29–42.

    Article  CAS  Google Scholar 

  7. Golod, N.A., Loiko, N.G., Mulyukin, A.L., Neimatov, A.L., Vorob’eva, L.I., Suzina, N.E., Shanenko, E.F., Gal’chenko, V.F., and El’-Registan, G.I., Adaptation of lactic acid bacteria to unfavorable growth conditions, Microbiology (Moscow), 2009, vol. 78, no. 3, pp. 280–289.

    Article  CAS  Google Scholar 

  8. Weichselbaum, E., Probiotics and health: a review of the evidence, Nutr. Bull., 2009, vol. 34, pp. 340–373.

    Article  Google Scholar 

  9. De Vrese, M. and Schrezenmeir, J., Probiotics, prebiotics, and synbiotics, Adv. Biochem. Eng. Biotechnol., 2008, vol. 111, pp. 1–66.

    PubMed  Google Scholar 

  10. Balakrishnan, M. and Floch, M.H., Prebiotics, probiotics and digestive health, Curr. Opin. Clin. Nutr. Metab. Care, 2012, vol. 15, no. 6, pp. 580–585.

    Article  PubMed  Google Scholar 

  11. Ganina, V.I., Anan’eva, N.V., Borisova, L.A., and Zharkova, E.Yu., Investigation of stability of the properties of lactic acid bacteria, Molochnaya Promyshlennost’, 2006, no. 10, pp. 39–40.

    Google Scholar 

  12. Górska, S., Jarzab, A., and Gamian, A., Probiotic bacteria in the human gastrointestinal tract as a factor stimulating the immune system, Postepy Hig. Med. Dosw. (Online), 2009, vol. 63, pp. 653–667.

    Google Scholar 

  13. Lebeer, S., Vanderleyden, J., and De Keersmaecker, S., Adaptation factors of the probiotic Lactobacillus rhamnosus GG, Beneficial Microbes, 2010, vol. 1, no. 4, pp. 335–342.

    Article  CAS  PubMed  Google Scholar 

  14. Samanidou, V. and Nisyriou, S., Multi-residue methods for confirmatory determination of antibiotics in milk, J. Sep. Sci., 2008, vol. 31, no. 11, pp. 2068–2090.

    Article  CAS  PubMed  Google Scholar 

  15. Quévrain, E. and Seksik, P., Intestinal microbiota: from antibiotic-associated diarrhea to inflammatory bowel diseases, Presse Med., 2013, vol. 42, no. 1, pp. 45–51.

    Article  PubMed  Google Scholar 

  16. Zhou, N., Zhang, J.X., Fan, M.T., Wang, J., Guo, G., and Wei, X.Y., Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts, J. Dairy Sci., 2012, vol. 95, no. 9, pp. 4775–4783.

    Article  CAS  PubMed  Google Scholar 

  17. Muñoz-Atienza, E., Gómez-Sala, B., Arau-jo, C., Campanero, C., del Campo, R., Hernández, P.E., Herranz, C., and Cintas, L.M., Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture, BMC Microbiol., 2013, vol. 13, p. 15.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Gillings, M.R. and Stokes, H.W., Are humans increasing bacterial evolvability?, Trends Ecol. Evol., 2012, vol. 27, no. 6, pp. 346–352.

    Article  PubMed  Google Scholar 

  19. Millar, M., Constraining the use of antibiotics: applying Scanlon’s contractualism, J. Med. Ethics, 2012, vol. 38, no. 8, pp. 465–469.

    Article  PubMed  Google Scholar 

  20. Figueroa, L.A. and Silverstein, J.A., Ruthenium red adsorption method for measurement of extracellular polysaccharides in sludge flocs, Biotechnol. Bioeng., 1989, vol. 33, no. 8, pp. 941–947.

    Article  CAS  PubMed  Google Scholar 

  21. Ermolaeva, G.A. and Kolcheva, R.A., Tekhnologiya proizvodstva piva i bezalkogol’nykh napitkov (Technologies for Production of Beer and Nonalcoholic Beverages), Moscow: Akademiya, 2000.

    Google Scholar 

  22. Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Basics of Antibiotic Science), Moscow: Nauka, 2004.

    Google Scholar 

  23. Gueimonde, M., Sánchez, B., de los Reyes-Gavilán, C., and Margolles, A., Antibiotic resistance in probiotic bacteria, Front Microbiol., 2013, vol. 4, p. 202.

    PubMed Central  PubMed  Google Scholar 

  24. Doroshenko, E.V., Loiko, N.G., Il’inskaya, O.N., Kolpakov, A.N., Gornova, I.B., Klimanova, E.V., and El’-Registan, G.I., Characterization of Bacillus cereus dissociants, Microbiology (Moscow), 2001, vol. 70, no. 6, pp. 698–705.

    Article  CAS  Google Scholar 

  25. Botina, S.G., Rozhkova, I.V., and Semenikhina, V.F., Use of exopolysaccharide-synthesizing lactic acid bacterial strains in production of cultured milk foods, Khranenie i pererab. sel’khozsyr’ya, 2010, no. 1, pp. 38–40.

    Google Scholar 

  26. Lew, W., Pai, M., Oxlade, O., Martin, D., and Menzies, D., Initial drug resistance and tuberculosis treatment outcomes: systematic review and meta-analysis, Ann. Intern. Med., 2008, vol. 2, no. 149, pp. 123–134.

    Article  Google Scholar 

  27. Bacteria as Multicellular Organisms, Shapiro, J.A. and Dworkin, M., Eds., New York: Oxford Univ. Press, 1997.

    Google Scholar 

  28. Stewart, P.S. and Franklin, M.J., Physiological heterogeneity in biofilms, Nat. Rev. Microbiol., 2008, vol. 6, pp. 199–210.

    Article  CAS  PubMed  Google Scholar 

  29. Lewis, K., Persister cells, Annu. Rev. Microbiol., 2010, vol. 64, pp. 357–372.

    Article  CAS  PubMed  Google Scholar 

  30. Bukharin, O.V., Gintsburg, A.L., Romanova, Yu.M., and El’-Registan, G.I., Mekhanizmy vyzhivaniya bakterii (Mechanisms of Bacterial Survival), Moscow: Meditsina, 2005.

    Google Scholar 

  31. D’Aimmo, M.R., Modesto, M., and Biavati, B., Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products, Int. J. Food Microbiol., 2007, vol. 115, no. 1, pp. 35–42.

    Article  PubMed  Google Scholar 

  32. Proctor, R.A., von Eiff, C., Kahl, B.C., Becker, K., McNamara, P., Herrmann, M., and Peters, G., Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections, Nat. Rev. Microbiol., 2006, vol. 4, pp. 295–305.

    Article  CAS  PubMed  Google Scholar 

  33. Bald, D. and Koul, A., Advances and strategies in discovery of new antibacterials for combating metabolically resting bacteria, Drug Discov. Today, 2013, vols. 5–6, pp. 250–255.

    Article  Google Scholar 

  34. Drenkard, E. and Ausubel, F.M., Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation, Nature, 2002, vol. 416, pp. 740–743.

    Article  CAS  PubMed  Google Scholar 

  35. Gröbner, S., Beck, J., Schaller, M., Autenrieth, I.B., and Schulte, B., Characterization of an Enterococcus faecium small-colony variant isolated from blood culture, Int. J. Med. Microbiol., 2012, vol. 302, no. 1, pp. 40–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Loiko.

Additional information

Original Russian Text © N.G. Loiko, M.A. Krasnova, T.V. Pichugina, A.I. Grinevich, V.I. Ganina, A.N. Kozlova, Yu.A. Nikolaev, V.F. Gal’chenko, G.I. El’-Registan, 2014, published in Mikrobiologiya, 2014, Vol. 83, No. 3, pp. 284–294.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiko, N.G., Krasnova, M.A., Pichugina, T.V. et al. Changes in the phase variant spectra in the populations of lactic acid bacteria under antibiotic treatment. Microbiology 83, 195–204 (2014). https://doi.org/10.1134/S0026261714030114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714030114

Keywords

Navigation