Skip to main content
Log in

Characterization of the aerobic hydrocarbon-oxidizing enrichments from a high-temperature petroleum reservoir by comparative analysis of DNA- and RNA-derived clone libraries

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Enrichment cultures of aerobic hydrocarbon-oxidizing bacteria obtained from the injection and production wells of the Dagang oil field (China) were studied by molecular biological and microbiological methods. This work is the first to report simultaneous isolation of DNA and RNA from enrichment cultures of microorganisms from oil strata with further construction of clone libraries of 16S rRNA genes and 16S crDNA (complementary rDNA). Comparative analysis of the DNA- and RNA-derived clone libraries made it possible to determine the total genomic diversity of microorganisms, as well as to reveal metabolically active microorganisms in these cultures. Phylotypes of bacteria of the genus Geobacillus were found to be dominant in the DNA and RNA clone libraries of the enrichment cultures from the production well. Phylotypes of bacteria belonging to Geobacillus, Pseudomonas, Tepidiphilus, and other genera were detected in the DNA and RNA libraries obtained from the culture from the injection well. Phylotypes of bacteria of the genus Geobacillus were predominant in the RNA library and represented the second-largest group (after pseudomonads) in the DNA library. In the RNA libraries of the alkB genes of both enrichments, three homologs close to alkB-geo1, alkB-geo2, and alkB-geo4 of bacteria of the genus Geobacillus were detected. The occurrence pattern of the alkB transcripts, ribosomal RNA, and the 16S rRNA genes of bacteria of the genus Geobacillus indicates the predominance and functional activity of geobacilli in the enrichment cultures of hydrocarbon-oxidizing bacteria from high-temperature petroleum reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belyaev, S.S., Laurinavichus, K.S., Obraztsova, A.Ya., Gorlatov, S.N., and Ivanov, M.V., Microbial Processes in Near-Bottom Zones of Oil Field Injection Wells, Mikrobiologiya, 1982, vol. 51, pp. 997–1001 (in Russian).

    CAS  Google Scholar 

  2. Nazina, T.N., Rozanova, E.P., and Kuznetsov, S.I., Microbial Oil Transformation Processes Accompanied by Methane and Hydrogen-Sulfide Formation, Geomicrobiol. J., 1985, vol. 4, pp. 103–130.

    Article  CAS  Google Scholar 

  3. Nazina, T.N., Grigor’yan, A.A., Shestakova, N.M., Babich, T.L., Pavlova, N.K., Ivoilov, V.S., Belyaev, S.S., Ivanov, M.V., Feng, Q., Ni, F., Wang, J., She, Y., Xiang, T., Mei, B., and Luo, Z., MEOR Study Enhances Production in a High-Temperature Reservoir, World Oil J., 2008, pp. 97–101.

  4. Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S., and Ivanov, M.V., Taxonomic Study of Aerobic Thermophilic Bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from Petroleum Reservoirs and Transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the New Combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans, Int. J. Syst. Evol. Microbiol., 2001, vol. 51, pp. 433–446.

    PubMed  CAS  Google Scholar 

  5. Nazina, T.N., Sokolova, D.Sh., Shestakova, N.M., Grigoryan, A.A., Mikhailova, E.M., Babich, T.L., Lysenko, A.M., Tourova, T.P., and Poltaraus, A.B., Qingxian Feng, Fangtian Ni, and Belyaev, S.S. The Phylogenetic Diversity of Aerobic Organotrophic Bacteria from the Dagang High-Temperature Oil Field, Mikrobiologiya, 2005, vol. 74, no. 3, pp. 401–409 [Microbiology (Engl. Transl.), vol. 74, no. 3, pp. 343–351].

  6. Nazina, T.N., Sokolova, D.Sh., Grigoryan, A.A., Shestakova, N.M., Mikhailova, E.M., Poltaraus, A.B., Tourova, T.P., Lysenko, A.M., Osipov, G.A., and Belyaev, S.S., Geobacillus jurassicus sp. nov., a New Thermophilic Bacterium Isolated from a High-Temperature Petroleum Reservoir, and the Validation of the Geobacillus Species, Syst. Appl. Microbiol., 2005, vol. 28, pp. 43–53.

    Article  PubMed  CAS  Google Scholar 

  7. Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., Tang, Y., Liu, X., Han, W., Peng, X., Liu, R., and Wang, L., Genome and Proteome of Long-Chain Alkane Degrading Geobacillus thermodenitrificans NG80-2 Isolated from a Deep-Subsurface Oil Reservoir, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 5602–5607.

    Article  PubMed  CAS  Google Scholar 

  8. Vomberg, A. and Klinner, U., Distribution of alkB Genes within n-Alkane-Degrading Bacteria, J. Appl. Microbiol., 2000, vol. 89, pp. 339–348.

    Article  PubMed  CAS  Google Scholar 

  9. van Beilen, J.B., Smits, T.H., Whyte, L.G., Schorcht, S., Rothlisberger, M., Plaggemeier, T., Engesser, K.-H., and Witholt, B., Alkane Hydroxylase Homologues in Gram-Positive Strains, Environ. Microbiol., 2002, vol. 4, pp. 676–682.

    Article  PubMed  Google Scholar 

  10. Van Beilen, J.B., Li, Z., Duetz, W.A., Smits, T.H.M., and Witholt, B., Diversity of Alkane Hydroxylase Systems in the Environment, Oil Gas Sci. Technol., 2003, vol. 58, pp. 427–440.

    Article  Google Scholar 

  11. Tourova, T.P., Nazina, T.N., Mikhailova, E.M., Rodionova, T.A., Ekimov, A.N., Mashukova, A.V., and Poltaraus, A.B., alkB Homologs in Thermophilic Bacteria of the Genus Geobacillus, Mol. Biol. (Moscow), 2008, vol. 42, no. 2, pp. 247–257. [Mol. Biol. (Moscow) (Engl. Transl.), vol. 42, no. 2, pp. 217–226].

    Article  Google Scholar 

  12. Orphan, V.J., Goffredi, S.K., Delong, E.F., and Boles, J.R., Geochemical Influence on Diversity and Microbial Processes in High-Temperature Oil Reservoirs, Geomicrobiol. J., 2003, vol. 20, pp. 295–311.

    Article  CAS  Google Scholar 

  13. Nazina, T.N., Shestakova, N.M., Grigor’yan, A.A., Mikhailova, E.M., Tourova, T.P., Poltaraus, A.B., Cingxian Feng, Fangtian Ni, and Belyaev, S.S. Phylogenetic Diversity and Activity of Anaerobic Microorganisms of High-Temperature Horizons of the Dagang Oil Field (P. R. China), Mikrobiologiya, 2006, vol. 75, no. 1, pp. 70–81 [Microbiology (Engl. Transl.), vol. 75 no. 1, pp. 55–65].

    CAS  Google Scholar 

  14. Li, H., Yang, S.Z., Mu, B.Z., Rong, Z.F., and Zhang, J., Molecular Phylogenetic Diversity of the Microbial Community Associated with a High-Temperature Petroleum Reservoir at an Offshore Oilfield, FEMS Microbiol. Ecol., 2007, vol. 60, pp. 74–84.

    Article  PubMed  CAS  Google Scholar 

  15. Marchant, R., Sharkey, F.H., Banat, I.M., Rahman, T.J., and Perfumo, A., The Degradation of N-Hexadecane in Soil by Thermophilic Geobacilli, FEMS Microbiol. Ecol., 2006, vol. 56, pp. 44–54.

    Article  PubMed  CAS  Google Scholar 

  16. Nogales, B., Moore, E.R., Llobet-Brossa, E., Rossello-Mora, R., Amann, R., and Timmis, K.N., Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil, Appl. Environ. Microbiol., 2001, vol. 67, pp. 1874–1884.

    Article  PubMed  CAS  Google Scholar 

  17. Mills, H.J., Martinez, R.J., Story, S., and Sobecky, P.A., Characterization of Microbial Community Structure in Gulf of Mexico Gas Hydrates: Comparative Analysis of DNA- and RNA-Derived Clone Libraries, Appl. Environ. Microbiol., 2005, vol. 71, pp. 3235–3247.

    Article  PubMed  CAS  Google Scholar 

  18. Miskin, I.P., Farrimond, P., and Head, I.M., Identification of Novel Bacterial Lineages as Active Members of Microbial Populations in a Freshwater Sediment Using a Rapid RNA Extraction Procedure and RT-PCR, Microbiology (UK), 1999, vol. 145, pp. 1977–1987.

    Article  CAS  Google Scholar 

  19. Borzenkov, I.A., Milekhina, E.I., Gotoeva, M.T., Rozanova, E.P., and Belyaev, S.S., The Properties of Hydrocarbon-Oxidizing Bacteria Isolated from the Oilfields of Tatarstan, Western Siberia, and Vietnam, Mikrobiologiya, 2006, vol. 75, no. 1, pp. 82–89 [Microbiology (Engl. Transl.), vol. 75 no. 1, pp. 66–72].

    CAS  Google Scholar 

  20. Yamamoto, S. and Harayama, S., PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1104–1109.

    PubMed  CAS  Google Scholar 

  21. Tourova, T.P., Korshunova, A.V., Mikhailova, E.M., Sokolova, D.Sh., Poltaraus, A.B., and Nazina, T.N., Application of gyrB and pare Sequence Similarity Analyses for Differentiation of Species within the Genus Geobacillus, Mikrobiologiya, 2010, vol. 79, no. 3, pp. 376–389 [Microbiology (Engl. Transl.), vol. 79 no. 3, pp. 356–369].

    Google Scholar 

  22. Brunk, C.F., Avaniss-Aghajani, E., and Brunk, C.A., A Computer Analysis of Primer and Probe Hybridization Potential with Bacterial Small-Subunit rRNA Sequences, Appl. Environ. Microbiol., 1996, vol. 61, pp. 872–879.

    Google Scholar 

  23. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., 16S Ribosomal DNA Amplification for Phylogenetic Study, J. Bacteriol., 1991, vol. 173, pp. 697–703.

    PubMed  CAS  Google Scholar 

  24. Kolganova, T.V., Kuznetsov, B.B., and Tourova, T.P., Designing and Testing Oligonucleotide Primers for Amplification and Sequencing of Archaeal 16S rRNA Genes, Mikrobiologiya, 2002, vol. 71, no. 2, pp. 283–285 [Microbiology (Engl. Transl.), vol. 71 no. 2, pp. 243–246].

    CAS  Google Scholar 

  25. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment Through Sequence Weighting, Positions-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, vol. 9, pp. 3251–3270.

    Google Scholar 

  26. Saitou, N. and Nei, M., The Neighbour-Joining Method: a New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.

    PubMed  CAS  Google Scholar 

  27. Van de Peer, Y. and De Wachter, R., TREECON for Windows: a Software Package for the Construction and Drawing of Evolutionary Trees for the Microsoft Windows Environment, Comput. Appl. Biosci., 1994, vol. 10, pp. 569–570.

    PubMed  Google Scholar 

  28. Kato, T., Haruki, M., Imanaka, T., Morikawa, M., and Kanaya, S., Isolation and Characterization of Psychotrophic Bacteria from Oil-Reservoir Water and Oil Sands, Appl. Microbiol. Biotechnol., 2001, vol. 55, pp. 794–800.

    Article  PubMed  CAS  Google Scholar 

  29. Gerdes, B., Brinkmeyer, R., Dieckmann, G., and Helmke, E., Influence of Crude Oil on Changes of Bacterial Communities in Arctic Sea-Ice, FEMS Microbiol. Ecol., 2005, vol. 53, pp. 129–139.

    Article  PubMed  CAS  Google Scholar 

  30. Manaia, C.M., Nogales, B., and Nunes, O.C., Tepidiphilus margaritifer gen. nov., sp. nov., Isolated from a Thermophilic Aerobic Digester, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 1405–1410.

    Article  PubMed  CAS  Google Scholar 

  31. Van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., Röthlisberger, M., and Witholt, B., Analysis of Pseudomonas putida Alkane Degradation Gene Clusters and Flanking Insertion Sequences: Evolution and Regulation of the alk-Genes, Microbiology (UK), 2001, vol. 147, pp. 1621–1630.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Nazina.

Additional information

Original Russian Text © N.M. Shestakova, A.V. Korshunova, E.M. Mikhailova, D.Sh. Sokolova, T. P. Tourova, S.S. Belyaev, A.B. Poltaraus, T.N. Nazina, 2011, published in Mikrobiologiya, 2011, Vol. 80, No. 1, pp. 63–73.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shestakova, N.M., Korshunova, A.V., Mikhailova, E.M. et al. Characterization of the aerobic hydrocarbon-oxidizing enrichments from a high-temperature petroleum reservoir by comparative analysis of DNA- and RNA-derived clone libraries. Microbiology 80, 60–69 (2011). https://doi.org/10.1134/S0026261711010140

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261711010140

Keywords

Navigation