Skip to main content
Log in

Nitroxyl compounds in bacteria: Search for functions

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A method was developed for incorporation of two deuterium atoms into the reactive group of a new type of nitroxyl compounds from Micrococcus luteus (a lysodektose which can be transformed into a long-living free radical). This compound was found to persist in the cells treated with gentamycin and chloramphenicol, while treatment with gramicidin C, ampicillin, benzyl viologen, furadonin, and mercury chloride resulted in a drastic decrease of its intracellular content. Cultivation of M. luteus in a medium with EDTA resulted in accumulation of much higher amounts of lysodektose (up to 300%), and this phenomenon is interpreted as an indication of the possible siderophore function of the compound. Since the M. luteus genome was recently sequenced, this may help to understand the fate and role of lysodektose in bacterial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parmon, V.N. and Kokorin, A.I., Zhidomirov GM. Stabil’nye biradikaly (Stable Biradicals), Moscow: Nauka, 1980.

    Google Scholar 

  2. Shumaev, K., Gubkin, A., Gubkina, S., Gudkov, L., Sviryaeva, I., Timoshin, A., Topunov, A., Vanin, A., and Ruge, E., The Interaction between Dinitrosyl Iron Complexes and Intermediates of Oxidative Stress, Biofizika, 2006, vol. 51, pp. 472–477 [Boiphysics (Engl. Transl.), vol. 51, no. 3, pp. 423–428].

    PubMed  CAS  Google Scholar 

  3. Kawagishi, H., Hayashi, K., Tokuyama, S., Hashimoto, S., Kimura, T., and Dombo, M., Novel Bioactive Compound from the Sparassis crispa Mushroom, Biosc. Biotechnol. Biochem., 2007, vol. 71, pp. 1804–1806.

    Article  CAS  Google Scholar 

  4. Meyer, J.M., Hohnadel, D., and Halle, F., Cepabactin from Ps. cepacia—a New Type of Siderophore, J. Gen. Microbiol., 1989, vol. 135, pp. 1479–1487.

    PubMed  CAS  Google Scholar 

  5. Biniukov, V., Kharatian, E., and Ostrovsky, D., A New Trisaccharide from Micrococcus lysodeiktikus, BioFactores, 1990, vol. 2, pp. 95–97.

    Google Scholar 

  6. Stepanov, S., Biniukov, V., Kharatian, E., Shumaev, K., and Ostrovsky, D., Interconversion of Radical and Nitron Forms of Lysodektose-a New Trisaccharide from Micrococcus lysodeiktikus, BioFactores, 1992, vol. 3, pp. 37–39.

    Google Scholar 

  7. Sawa, T., Zaki, M., Okamoto, T., Akuta, T., Tokutomi, Y., Kim-Mitsuyama, S., Ihara, H., Kobayashi, A., Yamamoto, M., Fuji, S., Arimoto, H., and Akaike, T., Protein S-Guanilation by the Biological Signal 8-Nitroguanosine 3,5 Cyclic Monophosphate, Nat. Chem. Biol., 2007, vol. 3, pp. 727–735.

    Article  PubMed  CAS  Google Scholar 

  8. Kers, J.A., Wachs, M.J., Krasnoff, S.B., Widom, J., Cameron, K.D., Bokhalid, R.A., Gibson, D.M., Crane, B.R., and Loria, R., Nitration of a Peptide Phytotoxin by Bacterial Nitric Oxide Synthase, Nature, 2004, vol. 429, pp. 79–82.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson, E.G., Sparks, J.P., Dzikovski, B., Crane, B.R., Gibson, B.M., and Loria, R., Plant Pathogenic Streptomyces Species Produce Nitric Oxide Synthatase Derived Nitric Oxide in Response to Host Signals, Chem. Biol., 2008, vol. 15, pp. 43–50.

    Article  PubMed  CAS  Google Scholar 

  10. Yarullina, D.R., Il’inskaya, O.N., Aganov, A., Silkin, N.I., and Zverev, D.G., Alternative Pathways of Nitric Oxide Formation in Lactobacilli: Evidence for Nitric Oxide Synthase Activity by EPR, Mikrobiologiya, 2006, vol. 75, pp. 731–736 [Microbiology (Engl. Transl.), vol. 75, no. 6, pp. 634–638].

    Google Scholar 

  11. Shatalin, K., Gusarov, I., Avetissova, E., Shatalina, Y., McQuade, L.E., Lippard, S.J., and Nudler, E., Bacillus snthracis-Derived Nitric Oxide Is Essential for Pathogen Virulence and Survival in Macrophages, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 1009–1013.

    Article  PubMed  CAS  Google Scholar 

  12. Berliner, L., Khamtsov, V., Clanton, T., and Fujii, H., NMR and MRI Spin Trapping: Using NMR to Learn about Free Radical Reactions, Curr. Top. Biophys., 2002, vol. 26, pp. 21–27.

    CAS  Google Scholar 

  13. Mannini, M., Sorace, L., Gorini, L., Piras, F., Caneschi, A., Magnani, A., Menichetti, S., and Gatteschi, D., Self-Assembled Organic Radicals on Au(III) Surfaces: a Combined ToF0SIMS, STM and ESR Study, Langmuir, 2007, vol. 23, pp. 2389–2397.

    Article  PubMed  CAS  Google Scholar 

  14. Calami, P., Carotti, S., Guerri, A., Messori, L., Mini, E., Orioli, P., and Sperono, G.P., Biological Properties of Two Gold (III) Complexes AuCl3(Hpm) and AuCl2(Pm), J. Inorg. Biochem., 1997, vol. 66, pp. 103–109.

    Article  Google Scholar 

  15. Marakushev, S.A., Geomikrobiologiya i geokhimiya zolota (Geomicrobiology and Geochemistry of Gold), Moscow: Nauka, 1991.

    Google Scholar 

  16. Levchenko, L.A., Kulakovskaya, S.I., Borod’ko, A.Yu., Lariontseva, N.V., Sadkov, A.P., and Kulikov, A.V., Study of the Redox State of Au-Protein from Micrococcus luteus, Dokl. Akad. Nauk, 1998, vol. 362, pp. 830–839 [Doklady Biochemistry, (Engl. Transl.), vol. 362, pp. 167].

    CAS  Google Scholar 

  17. Haruta, M., Kobayashi, T., Sano, H., and Yamada, N., Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0°C, Chem. Lett., 1987, vol. 16, pp. 405–408.

    Article  Google Scholar 

  18. Turner, M., Golovko, V., Vaughan, O., Abdulkin, P., Berenguer-Murcia, A., Tokhov, M., Johnson, B., and Lambert, R., Selective Oxidation with Dioxygen by Gold Nanoparticle Catalysts Derived from 55-Atom Claster, Nature, 2008, vol. 454, pp. 981–983.

    Article  PubMed  CAS  Google Scholar 

  19. Levchenko, L.A., Sadkov, A.P., Lariontseva, N.V., Koldasheva, E.M., Shilova, A.K., and Shilov, E.M., Gold Helps Bacteria to Oxidize Methane, J. Inorg. Biochem., 2002, vol. 88, pp. 251–253.

    Article  PubMed  CAS  Google Scholar 

  20. Lysak, E.I., Demina, G.R., Matveeva, E.V., Ogrel’, O.D., Trutko, S.M., and Ostrovskii, D.N., Biosynthesis of 2-C-Methyl-D-Erythritol-2,4-Cyclopyrophosphate in Bacteria, Mikrobiologiya, 1999, vol. 68, no. 1, pp. 5–19 [Microbiology (Engl. Transl.), vol. 68, no. 1, pp. 1–9].

    Google Scholar 

  21. Stolze, K. and Nohl, H., Free Radical Intermediates in the Oxidation of N-Methylhydroxilamine and N,N′ Dimethylhydroxilamin by Oxyhaemoglobin, Free Rad. Res. Comm, 1999, vol. 8, pp. 123–131.

    Article  Google Scholar 

  22. Bryk, R., Griffin, P., and Nathan, C., Peroxynitrite Reductase Activity of Bacterial Peroxyredoxins, Nature, 2000, vol. 407, pp. 211–212.

    Article  PubMed  CAS  Google Scholar 

  23. Cabaj, A. and Kosakowska, A., Iron Dependent Growth of and Siderophore Production by Two Heterotrophic Bacteria Isolated from Brackish Water of the Southern Baltic Sea, Microbiol. Res., 2007, Aug. 3 [Epub. ahead of print].

  24. Drabowicz, J., Kotynski, A., Kudzin, Z., and Skowronski, R., Trifluoroacetic Anhydride-Sodium Iodide as a Reagent for the Selective Detection of Nitrones and Nitroxide Radicals by Thin Layer Chromatography, J. Chromatogr., 1989, vol. 473, pp. 287–292.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Ostrovsky.

Additional information

Original Russian Text © V.Yu. Artsatbanov, I.A. Galon, A.V. Goncharenko, S.N. Ostrovsky, 2009, published in Mikrobiologiya, 2009, Vol. 78, No. 5, pp. 605–611.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artsatbanov, V.Y., Galon, I.A., Goncharenko, A.V. et al. Nitroxyl compounds in bacteria: Search for functions. Microbiology 78, 547–553 (2009). https://doi.org/10.1134/S0026261709050038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261709050038

Key words

Navigation