Skip to main content
Log in

Biosynthesis of the subtilisin-like serine proteinase of Bacillus intermedius under salt stress conditions

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The biosynthesis of the subtilisin-like serine proteinase of Bacillus intermedius 3–19 by the recombinant strain Bacillus subtilis AJ73(pCS9) was found to be enhanced under salt stress conditions (growth in a medium containing 1 MNaCl and 0.25 M sodium citrate). In a recombinant strain of B. subtilis deficient in the regulatory proteins DegS and DegU, which control the synthesis of degradative enzymes, the expression of the proteinase gene was inhibited. In contrast, in the strain B. subtilis degU32(Hy), which provides for the overproduction of proteins positively regulated by the DegS-DegU system, the biosynthesis of the subtilisin-like proteinase of B. intermedius 3–19 increased by 6–10 fold. These data suggest that the DegS-DegU system is involved in the positive regulation of the expression of the subtilisin-like B. intermedius proteinase gene in recombinant B. subtilis strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stock, J.B., Ninfa, A.J., and Stock, A.M., Protein Phosphorylation and Regulation of Adaptive Responses in Bacteria, Microbiol. Rev., 1989, vol. 53, pp. 450–490.

    PubMed  CAS  Google Scholar 

  2. Hulett, F.M., The Signal Transduction Network for Pho Regulation in Bacillus subtilis, Mol. Microbiol., 1996, vol. 19, no. (5), pp. 933–939.

    Article  PubMed  CAS  Google Scholar 

  3. Msadek, T., Kunst, F., Henner, D., Klier, A., Rapoport, G., and Dedonder, R., Signal Transduction Pathway Controlling Synthesis of a Class of Degradative Enzymes in Bacillus subtilis: Expression of the Regulatory Genes and Analysis of Mutations in degS and degU, J. Bacteriol., 1990, vol. 172, pp. 824–834.

    PubMed  CAS  Google Scholar 

  4. Kunst, F., Msadek, T., Bignon, J., and Rapoport, G., The DegS/DegU and ComP/ComA Two-Component Systems Are Part of a Network Controlling Degradative Enzyme Synthesis and Competence in Bacillus subtilis, Res. Microbiol., 1994, vol. 145, no. 56, pp. 393–402.

    Article  PubMed  CAS  Google Scholar 

  5. Kunst, F. and Rapoport, G., Salt Stress Is an Environmental Signal Affecting Degradative Enzyme Synthesis in Bacillus subtilis, J. Bacteriol., 1995, vol. 175, no. 9, pp. 2403–2407.

    Google Scholar 

  6. Dartois, V., Debarbouille, M., Kunst, F., and Rapoport, G., Characterization of a Novel Member of the DegS-DegU Regulon Affected by Salt Stress in Bacillus subtilis, J. Bacteriol., 1998, vol. 180, pp. 1855–1861.

    PubMed  CAS  Google Scholar 

  7. Sharipova, M.R., Balaban, N.P., Gabdrakhmanova, L.A., Shilova, M.A., Kadyrova, Yu.M., Rudenskaya, G.N., and Leshchinskaya, I.B., Hydrolytic Enzymes and Sporulation in Bacillus intermedius, Mikrobiologiya, 2002, vol. 71, no. 4, pp. 494–499.

    CAS  Google Scholar 

  8. Balaban, N.P., Mardanova, A.M., Sharipova, M.R., Gabdrakhmanova, L.A., Sokolova, E.A., Rudenskaya, G.N., and Leshchinskaya, I.B., Purification and Characterization of the Serine Proteinase 2 of B. intermedius 3–19, Biokhimiya, 2004, vol. 69, pp. 519–526.

    Google Scholar 

  9. Balaban, N.P., Sharipova, M.R., Itskovich, E.L., Leshchinskaya, I.B., and Rudenskaya, G.N., Secretory Serine Proteinase of the Spore-forming Bacterium B. intermedius 3–19, Biokhimiya, 1994, vol. 59, no. 9, pp. 1993–1400.

    Google Scholar 

  10. Sharipova, M., Balaban, N., Kayumov, A., Kirillova, Y., Mardanova, A., Gabdrakhmanova, L., Rudenskaya, G., Leshchinskaya, I., Akimkina, T., Safina, D., Demidyuk, I., and Kostrov, S., The Expression of the Serine Proteinase Gene of B. intermedius in B. subtilis, Microbiol. Res., 2006 (in press).

  11. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  12. Itskovich, E.L., Balaban, N.P., Mardanova, A.M., Shakirov, E.V., Sharipova, M.R., Leshchinskaya, I.B., Ksenofontov, A.L., and Rudenskaya, G.N., Enzymatic Properties of the Thiol-Dependent Serine Proteinase of B. intermedius, Biokhimiya, 1997, vol. 62, pp. 60–65.

    Google Scholar 

  13. Chang, S. and Cohen, S.N., High-Frequency Transformation of Bacillus subtilis Protoplasts by Plasmid DNA, Mol. Gen. Genet., 1979, vol. 168, pp. 1111–1115.

    Article  Google Scholar 

  14. Altschul, S.F., Madden, T.L., Schaumluffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSIBLAST: A New Generation of Protein Database Search Programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  15. Goel, A., Lee, J., Domach, M.M., and Ataai, M.M., Suppressed Acid Formation by Co-feeding of Glucose and Citrate in Bacillus Cultures: Emergence of Pyruvate Kinase as a Potential Metabolic Engineering Site, Biotechnol. Prog., 1995, vol. 11, no. 4, pp. 380–385.

    Article  PubMed  CAS  Google Scholar 

  16. Jan, J., Valle, F., Bolivar, F., and Merino, E., Characterization of the 5P Subtilisin (aprE) Regulatory Region from Bacillus subtilis, FEMS Microbiol. Lett., 2000, vol. 183, pp. 9–14.

    PubMed  CAS  Google Scholar 

  17. Shimane, K. and Ogura, M., Mutational Analysis of the Helix-Turn-Helix Region of Bacillus subtilis Response Regulator DegU, and Identification of Cis-Acting Sequences for DegU in the aprE and comK Promoters, J. Biochem. (Tokyo), 2004, vol. 136, no. 3, pp. 387–397.

    CAS  Google Scholar 

  18. Gabdrakhmanova, L., Vishniakov, I., Sharipova, M., Balaban, N., Kostrov, S., and Leshchinskaya, I., Salt Stress Induction of Glutamyl Endopeptidase Biosynthesis in Bacillus intermedius, Microbiol. Res., 2005, vol. 160, no. 3, pp. 233–242.

    Article  PubMed  CAS  Google Scholar 

  19. Sleator, R.D. and Hill, C., Bacterial Osmoadaptation: the Role of Osmolytes in Bacterial Stress and Virulence, FEMS Microbiol. Rev., 2002, vol. 26, no. 1, pp. 49–71.

    Article  PubMed  CAS  Google Scholar 

  20. Smirnova, G.V., Krasnykh, T.A., and Oktyabr’skii, O.N., The Role of Glutathione in the Response of Escherichia coli to Osmotic Stress, Biokhimiya, 2001, vol. 66, no. 9, pp. 973–978.

    CAS  Google Scholar 

  21. McLaggan, D., Logan, T.M., Lynn, D.G., and Epstein, W., Involvement of Gamma-Glutamyl Peptides in Osmoadaptation of Escherichia coli, J. Bacteriol., 1990, vol. 172, no. 7, pp. 3631–3636.

    PubMed  CAS  Google Scholar 

  22. Dinnbier, U., Limpinsel, E., Schmid, R., and Bakker, E.P., Transient Accumulation of Potassium Glutamate and Its Replacement by Trehalose during Adaptation of Growing Cells of Escherichia coli K-12 to Elevated Sodium Chloride Concentrations, Arch. Microbiol., 1988, vol. 150, no. 4, pp. 348–357.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Kayumov.

Additional information

Original Russian Text © A.R. Kayumov, N.P. Balaban, A.M. Mardanova, S.V. Kostrov, M.R. Sharipova, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 5, pp. 642–648.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayumov, A.R., Balaban, N.P., Mardanova, A.M. et al. Biosynthesis of the subtilisin-like serine proteinase of Bacillus intermedius under salt stress conditions. Microbiology 75, 557–562 (2006). https://doi.org/10.1134/S0026261706050043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261706050043

Key words

Navigation